Monophonic radius distance Monophonic Number on Special Graphs

A. ANTO KINSLEY*, M.SHANTHI**

* Department of Mathematics,

St.Xavier's College (Autonomous), Palayamkottai-627002.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, India.
**Research Scholar(Reg No. 11822), Department of Mathematics, St.Xavier's College (Autonomous), Palayamkottai-627002. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

Abstract

Let G be a connected graph of order at least two. We study about the monophonic sets and define a new set called the monophonic radius- distance monophonic set of a graph G. The monophonic radius was found for some corona related, path and cycle related graphs are found. Also Monophonic radius distance monophonic number are found.

Keywords: Monophonic distance, r_{m} - distance monophonic set, r_{m} - distance monophonic number

Mathematics Subject Classification 2010: 05C12.

I. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basis graph terminology, we refer to Harary [1,4]. A chord of a path is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of the longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=\max \left\{d_{m}(u, v): u \in V(G)\right\}$. The monophonic radius $\operatorname{rad}_{m}(G)$ of G is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$. The monophonic diameter $\operatorname{diam}_{m}(G)$ of G is $\operatorname{diam}_{m}(G)=$ $\max \left\{e_{m}(v): v \in V(G)\right\}$. A vertex v is a simplicial vertex of a graph G if $\langle N(v)\rangle$ is complete. A vertex v is an universal vertex of a graph G, if it is a full degree vertex of G. In this paper we study the distance monophonic sets and numbers for various graphs with respect to the monophonic radius distance. Throughout this paper we refer r_{m} as monophonic radius.

II. THE r_{m} - DISTANCE MONOPHONIC SET

Definition 2.1. For a connected graph $G=(V, E)$ of order at least two, the set M of vertices of G is a r_{m} - distance monophonic set of G. If each vertex of G lies on an $x-y$ monophonic path of length r_{m} for some vertices x and y in M where r_{m} is the monophonic radius. The minimum cardinality of a r_{m} - distance
monophonic set G is the r_{m} - distance monophonic number of G, denoted by $m_{r_{m}}(G)$.

Theorem 2.2.For the corona graph $C_{n} \odot K_{m}$, the monophonic radius is $n-1$.
Proof. For the corona graph $C_{n} \odot K_{m}$, there are $\mathrm{n}(\mathrm{m}+1)$ vertices. Among those $n(m+1)$ vertices, the $n m$ vertices have the monophonic eccentricity n and all the other n vertices of $C_{n} \odot K_{m}$ have the monophonic eccentricity $n-1$. Thus the minimum monophonic eccentricity which is monophonic eccentricity radius is $n-1$.
Theorem 2.3.For the corona graph $C_{n} \odot K_{m}, r_{m}$-distance monophonic number is $n m$.
Proof. For the corona graph $C_{n} \odot K_{m}$, by the theorem 2.2 , the monophonic radius is $n-1$ all of them vertices of $C_{n} \odot K_{m}$ form the minimum r_{m} - distance monophonic distance. Hence $m_{r_{m}}(G)=n m$.
Theorem 2.4. For the corona $K_{n} \odot K_{m} n \geq 4, m \geq 1$, the monophonic radius, $r_{m}=2$.
Proof. In the corona graph $K_{n} \odot K_{m}$, there are nm vertices. Among the $n m$ vertices all the n copies of K_{m} vertices has the eccentricity 3 and all the n vertices of K_{n} has the eccentricity 2 . Hence minimum eccentricity is 2 for the corona graph $K_{n} \odot K_{m}$.Hence the monophonic radius of $K_{n} \odot K_{m} n \geq 4, m \geq 1$ is 2 .
Theorem 2.5.For the corona $K_{n} \odot K_{m} n \geq 4, m \geq 1$, $m_{r_{m}}(G)$ $=m n+r_{m}$. Where r_{m} is the monophonic radius of $K_{n} \odot K_{m}$. Proof. Let the corona graph $K_{n} \odot K_{m}=\mathrm{G}$ we have the monophonic radius is 2 . Also we know that every simplicial vertex belongs to every r_{m}-distance monophonic set. Here all the n copies of K_{m} vertices are the simplicial vertices of $K_{n} \odot K_{m}$. Hence all these $n m$ vertices belongs to every r_{m}-distance monophonic set of $K_{n} \odot K_{m}$. But these vertices alone does not form the $r_{m}-$ distance monophonic set. Hence include any two vertices of K_{n} with $n m$ vertices to form a minimum r_{m}-distance monophonic set of $K_{n} \odot K_{m}$. Hence $m_{r_{m}}(G)=m n+2$. Here $r_{m}=2$ for every $K_{n} \odot K_{m}$. Hence we also can written as $m_{r_{m}}(G)=m n+r_{m}$.

Theorem 2.6.For the corona graph, $P_{n} \odot \overline{K_{m}}, n \geq 2$, the monophonic radius, $r_{m}= \begin{cases}\frac{n+2}{2} & \text { if } n \equiv 0(\bmod 2) \\ \frac{n+1}{2} & \text { if } n \equiv 1(\bmod 2)\end{cases}$
Proof. Let G be the corona graph $P_{n} \odot \overline{K_{m}}, n \geq 2$.
Case $(i) n \equiv 1(\bmod 2)$. All the vertices of P_{n} has the eccentricity as follow. The vertices v_{i} and v_{n+1-i} where $1 \leq i \leq\lceil n / 2\rceil$ has the eccentricity $n+1-i$. Also for the n copies of $\overline{K_{m}}$ vertices every $\mathrm{i}^{\text {th }}$ copy and $(n+1-i)^{t h}$ copy of \bar{k}_{m} vertices has the eccentricity $n+2-i$ where $1 \leq i \leq[n / 2]$. This implies the $v_{[n / 2]}{ }^{\text {vertex }}$ has the minimum eccentricity as $n+1-\lceil n / 2\rceil=\mathrm{n}+1-\left(\frac{n+1}{2}\right)=\frac{n+1}{2}$. Thus the monophonic radius of $P_{n} \odot \overline{K_{m}}$ where $n \equiv 1(\bmod 2)$ is $\frac{n+1}{2}$

Case(ii)n $\equiv 0(\bmod 2)$

The vertices v_{i} and v_{n+1-i} has the same eccentricity as $n+1-i$ where $1 \leq i \leq n / 2$. Also each vertex $i^{t h}$ copy and $(n+$ $1-i)^{t h}$ copy has the same eccentricity as $n+2-i$. Here the vertices $v_{n / 2}$ and $v_{n+1-n / 2}$ has the minimum eccentricity as $n+$ $1-n / 2=\frac{2 n+2-n}{2}=\frac{n+2}{2}$. Hence the monophonic radius of $P_{n} \odot \overline{K_{m}}$ where $n \equiv 0(\bmod 2)$ is $\frac{n+2}{2}$.
Theorem 2.7.For the corona graph $P_{n} \odot \overline{K_{m}}, n \geq 2, m_{r_{m}}(G)$ $=m n$.
Proof. Let G be the corona graph $P_{n} \odot \overline{K_{m}}, n \geq 2$
we know that $r_{m}=\left\{\begin{array}{ll}\frac{n+2}{2} & \text { if } n \equiv 0(\bmod 2) \\ \frac{n+1}{2} & \text { if } n \equiv 1(\bmod 2)\end{array}\right.$. Here all the vertices in then copies of $\overline{K_{m}}$ are the simplicial vertices. Hence these $n m$ vertices belong to every r_{m} - distance monophonic set and this $n m$ vertices covers all the vertices of $P_{n} \odot \overline{K_{m}}$ in the r_{m} distance monophonic path and its minimum. Hence $m_{r_{m}}(G)=m n$.
Theorem 2.8.For the graph $C_{n}{ }^{2}, n \geq 9$
$r_{m}= \begin{cases}\frac{2 n-6}{3} & n \equiv 0(\bmod 3) \\ \frac{2 n-5}{3} & n \equiv 1(\bmod 3) \\ \frac{2 n-7}{3} & n \equiv 2(\bmod 3)\end{cases}$
Proof. Let us consider the graph $C_{n}{ }^{2}, \mathrm{n} \geq 9$. We will see n arise in three cases.
Case(i)n $\equiv 0(\bmod 3)$
In $C_{n}{ }^{2}$ with $\equiv 0(\bmod 3)$, all the vertices of $C_{n}{ }^{2}$ have the same eccentricity of $\frac{2 n-6}{3}$. Hence the monophonic radius is $\frac{2 n-6}{3}$. i.e) $r_{m}=\frac{2 n-6}{3}$
Case $(i i) n \equiv 1(\bmod 3)$
In $C_{n}{ }^{2}$ with $n \equiv 1(\bmod 3)$, all the vertices of $C_{n}{ }^{2}$ have the same eccentricity of $\frac{2 n-5}{3}$. Hence the monophonic radius is $\frac{2 n-5}{3}$. i.e) $r_{m}=\frac{2 n-5}{3}$
Case (iii) $n \equiv 2(\bmod 3)$
In $C_{n}{ }^{2}$ with $n \equiv 2(\bmod 3)$, all the vertices of $C_{n}{ }^{2}$ have the same eccentricity of $\frac{2 n-7}{3}$. Hence the monophonic radius is $\frac{2 n-7}{3}$ i.e) $r_{m}=\frac{2 n-7}{3}$

Theorem 2.9. For the graph $C_{n}{ }^{2}, n \geq 9$
$m_{r_{m}}(G)=\left\{\begin{array}{ll}\frac{n-r}{2 q} \quad r=0,2,3,5 \\ \frac{n-r}{2 q}+1 & r=1,4\end{array}\right.$ where $n=6 q+r, 0 \leq r<6$
Proof. For the graph $C_{n}{ }^{2}, n \geq 9$ we will have six cases with respect to the remainder of modulo 6 .
Case(i)r $=0$
For the case $r=0$, we have to divide n vertices into $n / 6$ sets and label them to $S_{1}, S_{2}, \ldots S n / 6$. In each sets $S_{1}, \ldots . S_{n / 6}$ we have to label each vertices with $v_{i l}, v_{i 2}, v_{i 3}, v_{i 4}, v_{i 5}, v_{i 6}$ where $1 \leq$ $i \leq n / 6$. Choose the vertices $\mathrm{v}_{11}, \mathrm{v}_{14}$ in S_{1} and $v_{n / 6}$ vertex in $S_{n / 6}$ to form the minimum $r_{m^{-}}$distance monophonic set of $C_{n}{ }^{2}$. $m_{r_{m}}(G)=\frac{n}{2 q}$ where $n=6 q$. Case(ii)r $=1$

For the case $r=1$, we have to divide n vertices into $n / 6$ sets. We will have $S_{1}, \ldots . S_{n / 6}$ and one more vertex which we label as x_{1}. In each sets $S_{1}, \ldots . S_{n / 6}$ we have to label each vertices with $v_{i l}, v_{i 2}, v_{i 3}, \ldots . v_{i 6}$ where $\mathrm{i} \leq i \leq n / 6$. Choose v_{11}, v_{13} in S_{1} and $v_{n} / 6$ in $S_{n / 6}, x_{1}$ to form a minimum r_{m} - distance monophonic set of $C_{n}{ }^{2}$. Hence $m_{r_{m}}(G)=4$. This can be written as $\frac{n-1}{2 q}+1$ i.e). $m_{r_{m}}(G)=$ $\frac{n-r}{2 q}+1$.
Case (iii)r $=2$.
For the case $r=2$, we have to divide n vertices into $n / 6$ sets.We will have $S_{1}, \ldots S_{n / 6}$ and 2 more vertices which we label as x_{1}, x_{2} . In each sets S_{1}, S_{2}. .. $S_{n} / 6$ we have to label each vertices with $v_{i l}, v_{i 2}, v_{i 3}, \ldots . v_{i 6}$ where $\mathrm{i} \leq i \leq n / 6$. Choose $\mathrm{v}_{11}, \mathrm{v}_{14}$ in S_{1} and $v_{n / 6}{ }^{6}$ in $S n / 6$ to form a minimum r_{m} - distance monophonic set of $C_{n}{ }^{2}$. Hence $m_{r_{m}}(G)=3$. This can be written as $\frac{n-2}{2 q}$ where $\mathrm{n}=6 q+2$. i.e) $m_{r_{m}}(G)=\frac{n-r}{2 q}$.

Case (iv) $r=3$
For the case $r=3$, we have to divide n vertices into $n / 6$ sets. We will have $S_{1}, \ldots . S_{/ / 6}$ and 3 more vertices which we label as x_{1}, x_{2}, x_{3}. In each sets $S_{1}, S_{2} \ldots S_{/ 6}$ we have to label each vertices with $v_{i l}, v_{i 2}, v_{i 3}, \ldots . v_{i 6}$ where $\mathrm{i} \leq i \leq n / 6$. Choose v_{11}, v_{14} in S_{1} and also x_{3} to form a minimum r_{m} - distance monophonic set of $C_{n}{ }^{2}$. Hence $m_{r_{m}}(G)=3$. This can be written as $\frac{n-3}{2 q}$ where n $=6 q+3$. i.e). $m_{r_{m}}(G)=\frac{n-r}{2 q}$.
Case (v)r $=4$
For the case $r=4$, we have to divide n into $n / 6$ sets. We will have S_{1}, S_{2}. ... $S_{n / 6}$ and 4 vertices which we label as x_{1}, x_{2}, x_{3}, x_{4}. In each sets $\mathrm{S}_{1}, \ldots S_{n}$ we have to label each vertices with $v_{i l}, v_{i 2}, \ldots . v_{i 6}$ where $\mathrm{i} \leq i \leq n / 6$. Choose v_{11}, v_{13} in S_{1} and x_{2}, x_{4} to form a r_{m} - distance monophonic set of $C_{n}{ }^{2}$. Hence $m_{r_{m}}(G)=4$. This can be written as $\frac{n-4}{2 q}+1$ where $n=6 q+4$
i.e). $m_{r_{m}}(G)=\frac{n-r}{2 q}+1$.

Case (vi) $r=5$
For the case $r=5$, we have to divide n into $n / 6$ sets. We will have $S_{1}, S_{2} \ldots S_{n}$ and 5 vertices which we label as x_{1},
$x_{2}, \ldots x_{5}$. In each sets $S_{1, \ldots} \ldots S_{n}$ we have to label each vertices with $v_{i l}, v_{i 2}, \ldots . v_{i 6}$ where $\mathrm{i} \leq i \leq n / 6$. Choose v_{11}, v_{14} in S_{1} and x_{3} to form a r_{m} - distance monophonic set of $\mathrm{C}_{\mathrm{n}}{ }^{2}$. Hence $m_{r_{m}}(G)=5$. This can be written as $\frac{n-5}{2 q}$ where $n=6 q+5$
i.e). $m_{r_{m}}(G)=\frac{n-r}{2 q}$.

Theorem 2.10. For the graph $P_{n}{ }^{2}, n \geq 6$

$$
r_{m}=\left\{\begin{array}{cc}
n / 3 & n \equiv 0,3(\bmod 6) \\
\frac{n-1}{3} & n \equiv 1,4(\bmod 6) \\
\frac{n+1}{3} & n \equiv 2(\bmod 6) \\
\frac{n-2}{3} & n \equiv 5(\bmod 6)
\end{array}\right.
$$

Proof: Case $(i) n \equiv 0(\bmod 6)$
In this case, all the vertices of $P_{n}{ }^{2}$ has the eccentricity as follows. We will separate n vertices into $\frac{n}{2}$ vertices by v_{i} and v_{n+1-i} as $1 \leq i \leq \frac{n}{2}$ the same eccentricity. Now we consider the eccentricity of $v_{i}, 1 \leq i \leq \frac{n}{2}$. We will have the eccentricity $n-$ $(n / 3+(2 q+1))$ to v_{i} if $i \equiv 1,2(\bmod 3)$ where $i=3 q+r$ and $n-(n / 3+2 q)$ if $i \equiv 0(\bmod 3)$ where $1 \leq i \leq n / 2$ and then we consider the eccentricity $v_{n+1-i}, 1 \leq i \leq n / 2$ as v_{i}. Now we will see the $v_{n / 2}$ and $v_{n+1-n / 2}$ vertices has the minimum eccentricity as and $n-(n / 3+2 q)=n-\left(\frac{n+6 q}{3}\right)=n-\left(\frac{12 q+r}{3}\right)=n-\frac{12 q}{3}(\because$ $r=0)=6 q+r-4 q=2 q=\frac{6 q}{3}=\frac{6 q+r}{3}=n / 3$. Hence the minimum eccentricity is $n / 3$ and so the monophonic radius is $n / 3$ if $n \equiv 0,(\bmod 6)$
Case(ii) $n \equiv 1$, $(\bmod 6)$
In this case, we will separate n vertices into $\frac{n-1}{2}$ vertices by $v_{i}, v_{n+1-i} 1 \leq i \leq \frac{n-1}{2}$ has the same eccentricity and then we will have the remaining vertex $v_{\left[\frac{n}{2}\right]}$. The vertex $v_{i}, i \equiv 0(\bmod 3)$ has the eccentricity $n-\left(\frac{n-1}{3}+2 q\right)$ where $i=3 q+r$ and if $i \equiv$ $1,(\bmod 3)$ has eccentricity $n-\left(\frac{n-1}{3}+(2 q+1)\right)$ and if $i \equiv$ $2,(\bmod 3)$ has the eccentricity $n-\left(\frac{n-1}{3}+(2 q+2)\right) 1 \leq i \leq$ $\left\lceil\frac{n}{2}\right\rceil$. The vertex $v_{\left\lceil\frac{n}{2}\right\rceil}$ has the minimum eccentricity as $n-$ $\left(\frac{n-1+6 q+3}{3}\right)=n-\left(\frac{6 q+1-1+6 q+3}{3}\right)=n-\left(\frac{12 q+3}{3}\right)=n-(4 q+$ 1) $=6 q+1-4 q-1=2 q=\frac{6 q}{3}=\frac{6 q+1-1}{3}=\frac{n-1}{3}$. Hence the minimum eccentricity is $\frac{n-1}{3}$ andso the monophonic radius is $\frac{n-1}{3}$ and so the monophonic radius is $\frac{n-1}{3}$ if $n \equiv 1(\bmod 6)$.
Case(iii) $n=2(\bmod 6)$
In this case we will separate n vertices into $\frac{n}{2}$ vertices as v_{i}, v_{n+1-i} has the same eccentricity. $1 \leq i \leq \frac{n}{2}$. The vertex v_{i} has the eccentricity as $n-\left(\frac{n+1}{3}+2 q\right)$ if $i \equiv 0,1(\bmod 3)$ and $n-\left(\frac{n+1}{3}+(2 q+1)\right)$ if $i \equiv 2(\bmod 3)$ where $=3 q+r$. The vertices $v_{\frac{n-2}{2}}, v_{\frac{n}{2}}, v_{n+1-\frac{n-2}{2}}, v_{n+1-\frac{n}{2}}$ has the minimum eccentricity as $n-\left(\frac{n+1}{3}+2 q\right)$.Therefore $n-\left(\frac{n+1}{3}+2 q\right)=n-\left(\frac{n+1+6 q}{3}\right)=$
$n-\left(\frac{6 q+2+1+6 q}{3}\right)=n-\left(\frac{12 q+3}{3}\right)=n-(4 q+1)=6 q+2-$ $4 q-1=2 q+1=\frac{3(2 q+1)}{3}=\frac{6 q+3}{3}=\frac{6 q+2+1}{3}=\frac{n+1}{3}$. Hence the minimum eccentricity is $\frac{n+1}{3}$ and so the monophonic radius is $\frac{n+1}{3}$ if $n \equiv 2(\bmod 6)$.
Case(iv) $n \equiv 3(\bmod 6)$.
In this case, we will separate n vertices into $\frac{n-1}{2}$ vertices as v_{i}, v_{n+1-i} has the same eccentricity $1 \leq i \leq \frac{n-1}{2}$ and the remaining vertex $v_{\left[\frac{n}{2}\right]}$. The vertex v_{i} has the eccentricity as $n-$ $\left(\frac{n}{3}+2 q\right)$ if $i \equiv 0(\bmod 3)$ and $n-\left(\frac{n}{3}+(2 q+1)\right)$ if $i \equiv$ $1,2(\bmod 3)$. The vertices $v_{\frac{n-1}{2}}, v_{\left[\frac{n}{2}\right]}, v_{n+1-\frac{n-1}{2}}$, has the minimum eccentricity as $n-\left(\frac{n}{3}+(2 q+1)\right)$. Therefore $n-\left(\frac{n+6 q+3}{3}\right)=$ $n-\left(\frac{6 q+3+6 q+3}{3}\right)=n-\left(\frac{12 q+6}{3}\right)=n-(4 q+2)=6 q+3-$ $4 q-2=2 q+1=\frac{3(2 q+1)}{3}=\frac{6 q+3}{3}=\frac{n}{3}$. Hence the minimum eccentricity is $\frac{n}{3}$ and so the monophonic radius is $\frac{n}{3}$ if $n \equiv$ $3(\bmod 6)$.
Case(v)) $n \equiv 4(\bmod 6)$.
In this case we separate n vertices into $\frac{n}{2}$ vertices as v_{i}, v_{n+1-i} has the same eccentricity. The vertex v_{i} has the eccentricity as $n-\left(\frac{n-1}{3}+(2 q+1)\right)$ if $i \equiv 1(\bmod 3)$,
$n-\left(\frac{n-1}{3}+(2 q+2)\right)$ if $i \equiv 2(\bmod 3)$ and $n-\left(\frac{n-1}{3}+2 q\right)$ if $i \equiv 0(\bmod 3)$, where $i=3 q+r$. The vertices $v_{\frac{n}{2}}, v_{n+1-\frac{n}{2}}$, has the minimum eccentricity as $n-\left(\frac{n-1}{3}+(2 q+2)\right)^{2}$ Therefore $n-$ $\left(\frac{n-1}{3}+(2 q+2)\right)=n-\left(\frac{n-1+6 q+6}{3}\right)=n-\left(\frac{6 q+4-1+6 q+6}{3}\right)=$ $n-\left(\frac{12 q+9}{3}\right)=n-(4 q+3)=6 q+4-4 q+3=2 q+1=$ $\frac{3(2 q+1)}{3}=\frac{6 q+3}{3}=\frac{6 q+3+1-1}{3}=\frac{6 q+4-1}{3}=\frac{n-1}{3}$. Hence the minimum eccentricity is $\frac{n-1}{3}$ and so monophonic radius is $\frac{n-1}{3}$ if $n \equiv$ 4 $\bmod 6$)
Case $(v i) n \equiv 5(\bmod 6)$
In this case we separate n vertices into $\frac{n-1}{2}$ vertices as v_{i}, v_{n+1-i} has the same eccentricity and the the remaining vertex $v_{\left\lceil\frac{n}{2}\right\rceil}$ The eccentricity of v_{i} is $n-\left(\frac{n-2}{3}+(2 q+2)\right)$ if $i \equiv$ $0,1(\bmod 3)$, and $n-\left(\frac{n-2}{3}+(2 q+2)\right)$ if $i \equiv 2(\bmod 3)$, where $i=3 q+r$. The vertex $v_{\left[\frac{n}{2}\right]}$ has the minimum eccentricity as $n-\left(\frac{n-2}{3}+(2 q+1)\right)$ since $\left\lceil\frac{n}{2}\right\rceil \equiv 0(\bmod 3)$.Therefore $n-$ $\left(\frac{n-2}{3}+(2 q+1)\right)=n-\left(\frac{n-2+6 q+3}{3}\right)=n-\left(\frac{n+6 q+1}{3}\right)=n-$ $\left(\frac{6 q+5+6 q+1}{3}\right)=n-\left(\frac{12 q+6}{3}\right)=n-(4 q+2)=6 q+5-4 q-$ $2=2 q+3=\frac{3(2 q+3)}{3}=\frac{6 q+9}{3}=\frac{6 q+5+4+2-2}{3}=\frac{6 q+5+6-2}{3}=$ $\frac{6 q+5-2}{3}=\frac{n-2}{3}$. Hence the minimum eccentricity is $\frac{n-2}{3}$ and so monophonic radius is $\frac{n-2}{3}$ if $n \equiv 5(\bmod 6)$

Theorem 2.11. For the graph $P_{n}{ }^{2}, n \geq 6$
$m_{r_{m}}(G)=\left\{\begin{array}{rl}\frac{n-r}{2 q}+1 & r=0,2,3,4 \\ \frac{n-r}{2 q} & r=1,5\end{array}\right.$ where $n=6 q+r$,
$0 \leq r<6$
Proof. Case $(i) n \equiv 0(\bmod 6)$
In this case, we know that the monophonic radius, $r_{m}=$ $\frac{n}{3}$. If we divide vertex set $V(G)$ into two sets S_{1}, S_{2} with $\frac{n}{2}$ vertices each. In the each set $S_{1} \& S_{2}$ label the vertices with $v_{1 i}$ and $v_{2 i}$ in S_{1} and $\left(1 \leq i \leq \frac{n}{2}\right)$. Choose the vertices $v_{1 i}$ and $v_{1 \frac{n}{2}}$, and $v_{2 i}$ and $v_{2} \frac{n}{2}$ in s_{2} form the minimum r_{m}-distance monophonic set. Hence $m_{r_{m}}(G)=4$. This can be rewritten as $\frac{n}{2 q}+1$ where $n=6 q+$ r. Here $r=0$. Therefore $m_{r_{m}}(G)=\frac{n-r}{2 q}+1$
Case $(i i) . n \equiv 1(\bmod 6)$
In this case, we know that the monophonic radius, $r_{m}=$ $\frac{n-1}{3}$. If we divide vertex set $V(G)$ into two sets S_{1}, S_{2} with $\frac{n-1}{2}$. We have remaining one vertex label this with x_{1}. In each set S_{1} and S_{2} label the vertices with $v_{1 i}$ and $v_{2 i}\left(1 \leq i \leq \frac{n-1}{2}\right)$. Choose the vertices $v_{1 i}$ in S_{1}, and $v_{2 i}$ in S_{2} and also the take the vertex x_{1} to form a minimum r_{m}-distance monophonic set. Hence $m_{r_{m}}(G)=3$. This can be rewritten as $\frac{n-1}{2 q}$ where $n=6 q+r$. Here $r=1$. Therefore $m_{r_{m}}(G)=\frac{n-1}{2 q}$.

Case (iii). $n \equiv 2(\bmod 6)$

In this case, we know that the monophonic radius, $r_{m}=$ $\frac{n+1}{3}$. We divide the vertex $V(G)$ into two sets S_{1} and S_{2} with $\frac{n}{2}$ vertices. In each set S_{1} and S_{2} label the vertices with $v_{1 i}$ and $v_{2 i}\left(1 \leq i \leq \frac{n}{2}\right)$. Choose the vertices $v_{1 i}$ and $v_{i\left(\frac{n}{2}-1\right)}$ in S_{1} and v_{22} and $v_{2 \frac{n}{2}}$ in S_{2} to form a minimum r_{m}-distance monophonic set.

REFERENCES

[1] A.Anto Kinsley and M.Shanthi, Monophonic Number of a graph with respect to monophonic radius, Malaya Journal of Matematik ,Vol. S,No. 1, 168-172, (2020).
[2] F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Redwood City,CA,(1990).
[3] G. Chartrand, F. Harary and P. Zang, On the geodesic number of a graph, Networks. 39 (2009) 1-6.
[4] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw Hill, (2006).
[5] F. Harary, Graph Theory, Addison- Wesley(1956).
[6] J.John, P. Arul Paul Sudhakar, On the edge monophonic number of a graph, Filomat 26:6 (2012), 1081 - 1089.
[7] A. P. Santhakumaran and P.Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol.3, No. 2 (2011) 159 - 169.
[8] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, On the monophonic number of a graph, J. Appl. Math. Informatics. 32 (2014), No. $1-2$, pp. 255-266.

Hence $m_{r_{m}}(G)=4$. This can be rewritten as $\frac{n-2}{2 q}+1$ where $n=$ $6 q+r$. Here $r=2$. Therefore $m_{r_{m}}(G)=\frac{n-2}{2 q}+1$. Case (iv).n $\equiv 3(\bmod 6)$

In this case, we know that the monophonic radius, $r_{m}=$ $\frac{n}{3}$. We divide the vertex set $V(G)$ into two sets S and S_{2} with $\frac{n-1}{2}$ vertices and we have remaining one vertex label this with x_{1}. In each set S_{1} and S_{2} label the vertices with $v_{1 i}$ and $v_{2 i}(1 \leq i \leq$ $\frac{n-1}{2}$). Choose the vertices the vertices $v_{1 i}, v_{i \frac{n-1}{2}}$ is S_{1} and v_{22} is S_{2} and also take the vertex x_{1} to form a minimum r_{m}-distance monophonic set. Hence $m_{r_{m}}(G)=4$. This can be rewritten as $\frac{n-3}{2 q}+1$ where $n=6 q+r$. Here $r=3$. Therefore $m_{r_{m}}(G)=$ $\frac{n-r}{2 q}+1$.
Case $(v) . n \equiv 4(\bmod 6)$
In this case, we know that the monophonic radius, $r_{m}=$ $\frac{n-1}{3}$. We divide the vertex set $V(G)$ into two sets S_{1} and S_{2} with $\frac{n}{2}$ vertices. In each set S_{1} and S_{2} label the vertices with $v_{1 i}$ and $v_{2 i}\left(1 \leq i \leq \frac{n-1}{2}\right)$. Choose the vertices the vertices $v_{1 i}$ and $v_{i \frac{n}{2}}$ is S_{1} and v_{21} and $v_{2 \frac{n}{2}}$ is S_{2} to form a minimum r_{m}-distance monophonic set. Hence $m_{r_{m}}(G)=4$. This can be rewritten as $\frac{n-4}{2 q}+1$ where $n=6 q+4$. Therefore $m_{r_{m}}(G)=\frac{n-r}{2 q}+1$.
Case (vi).n $\equiv 5(\bmod 6)$
In this case, we divide the vertex set $V(G)$ into S_{1} and S_{2} with $\frac{n-1}{2}$ vertices and we have the remaining one vertex label it with x_{1}. In each set S_{1} and S_{2}, label the vertices with $v_{1 i}$ and $v_{2 i}(1 \leq i \leq$ $\frac{n-1}{2}$). Choose the vertices $v_{1 i}$ in S_{1} and v_{21} in S_{2} and also take the vertex x_{1} to form a minimum r_{m}-distance monophonic set. Hence $m_{r_{m}}(G)=3$. This can be rewritten as $m_{r_{m}}(G)=\frac{n-5}{2 q}$ where $n=6 q+r$. Here $r=5$. Therefore $m_{r_{m}}(G)=\frac{n-r}{2 q}$.

AUTHORS

First Author : Dr.A.Anto Kinsley,M.Sc.,M.Phil.,Ph.D.,M.Tech., Associate Professor,
Department of Mathematics,
St.Xavier's College (Autonomous), Palayamkottai-627002.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli-627012, India.

Second Author : Mrs. M.Shanthi, M.Sc.,M.Phil.,
Research Scholar (Reg No. 11822),
Department of Mathematics,
St.Xavier's College (Autonomous), Palayamkottai-627002. Affiliated to Manonmaniam Sundaranar University, Abishekapatti,
Tirunelveli-627012, India.

