Impact of soil carbon on flora and fauna of Cholistan Wildlife Sanctuary and Lal Suhanra National Park from Cholistan desert Pakistan

Muneeb Khalid¹, Sangam Khalil¹, Muhammad Abid¹, Tanveer Hussain¹, Muhammad Rafay¹, Muhammad Madnee¹, Muhammad Azeem Sabir¹, Huassain Ahmad Makki¹, Hamza Basit¹, Sana Ghafar¹

nanimad Azeem Sabir, Huassani Animad Makki, Hamza Dasit, Sana Onara

1. Institute of Forest Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.

Abstract

Amount of soil carbon has great impact on diversity of flora and fauna in desert type ecosystem. The study was conducted in Cholistan Wildlife Sanctuary (CWLS) and Lal Suhanra National Park (LSNP) to evaluate flora and fauna in contradiction of soil carbon stock. On the basis of stratification, vegetation structure and animal diversity; direct and indirect observations were made for biological diversity. Permanent 80 by 80m (0.64 ha) study sites was selected for sampling diversity of flora and fauna, while permanent transects of 805 by 62m (4.9 ha) was established for birds' inventory. During the floral study LSNP include 40 families including 103 Genus and 143 species while CWLS have 31 families including 85 genus and 123 species. found move diversity of birds including 28 species, mammals including 24 species and reptiles have 12 species in LSNP while birds include19 species, mammals 15 species and reptiles have 08 species in CWLS. Conclusively we can say soil carbon has positive impact on floral diversity which ultimately influence the fauna of the region. Higher will be the soil carbon greater will be the flora and fauna. In future limited soil C will also lower the biological diversity.

Keyword: Carbon, Cholistan, Fauna, Flora, LSNP, Sanctuary, Soil

I. INTRODUCTION

Today we are facing serious issues regarding the reduction in biological diversity. Decline in plants and animal diversity is one of which is the potential harm to terrestrial ecosystems and their functions (Naeem et al. 1994; Chapin et al. 2000; Sala et al. 2000; Loreau et al. 2001; Hooper et al. 2005; Balvanera et al. 2006). Reduced plant diversity may make it more difficult for terrestrial ecosystems to store long-lived carbon (C) pools as C sinks for atmospheric CO₂ (Fan et al. 1998; Pacala et al. 2001) that ultimately reduce the soil functioning. According to Lal (2004), the magnitude of the soil C pool is 3.3 times larger than the atmospheric pool and 4.5 times larger than the terrestrial biotic pool. Therefore, from the of greenhouse gases viewpoint, it's critical to comprehend whether and how variations in the number of plant species and fauna influence the rate of carbon sink in the soil.

Many studies (Tilman et al. 1996, 2001, 2006b; Hector et al. 1999; Hooper et al. 2000, 2005; Levine 2000; Naeem et al. 2000; Wolters et al. 2000; Spehn et al. 2005; van Ruijven & Berendse 2005) have suggested that the floral diversity/or composition of plant species affects ecosystem productivity, stability, nutrient dynamics, and invasibility. However, attribution of causation in such experiments has been

http://xisdxjxsu.asia

VOLUME 20 ISSUE 07 JULY 2024

open to alternative explanations (e.g. Huston 1997; Wardle 1999). Many of these studies have been understood and suggesting that experimentally imposed differences in plant species number mattered because greater species number gave greater differences in functional traits, thus allowing species to exploit resources in different ways (e.g. Hector et al. 1999; Tilman et al. 2001, 2006b; Spehn et al. 2005).

According to a few manipulative experimental studies conducted at small spatial scales (i.e., biodiversityecosystem functioning experiments), high floral diversity (both as species and functional group richness) increases SOC stocks by elevating carbon inputs (particularly below-ground carbon inputs) and by increasing microbial activity (Fornara & Tilman, 2008; Lange et al., 2015). For instance, high-diversity combinations of perennial grassland plant species retained 500% more soil carbon on average than monoculture plots of the same species during a 12year study on grassland biodiversity (Fornara & 2008). Across China, natural forest, Tilman. shrubland, and grassland sites have likewise shown this favorable correlation (Chen et al., 2018).

Measures of multifunctionality have grown in popularity in ecosystem research in recent years. Multifunctionality is the capacity of an ecosystem to deliver many functions and services at the same time (Manning et al., 2018). Numerous relationships have been examined using these metrics, including those in which habitat diversity influences the multifunctionality of biogeochemical processes (Alsterberg et al., 2017), the alteration of ecosystem services' multifunctionality by land-use intensification (Allan et al., 2015), and the impact of drought and microplastics on soil multifunctionality (Lozano et al., 2021).

Experiments based on biological diversity include both flora & fauna and functional composition of the ecosystem, that's why these have potential ability for the provision of exceptional insights into the factors that control the C deposition in the soil. But the C sequestration in soil horizon is a slow progression while the experiments based on biological diversity getting sufficient duration for the are now investigation of its dynamics and fundamental grounds. Here we measured impact of soil C accumulation for flora and fauna from LSNP and CWLS. (Tilman et al. 2006a; Fornara, and Tilman 2008) have shown the positive correlation between species composition and soil organic carbon and resulted greater number of plants will result higher accumulated of C in soil in grassland communities. However, the extent to which C accumulation is dependent on the existence of in the plant community remains unclear. Here we report results based on additional sampling of soil C levels that we use to determine the potential role of functional composition on soil C accumulation through time (Schittko 2022). In order to ascertain the possible influence of functional composition on soil C accumulation over time, we present here results from additional soil C level measurements (Schittko 2022).

Our main hypothesis is that the higher soil organic carbon result greater number of flora that

ultimately sustain the fauna. Positive effects of diversity on soil C accrual is totally dependent on greater C inputs returns to the soil from floral diversity (i.e. increased plant productivity). However, the existence of essential carbon has a large positive impact on plant productivity, (Brooker *et al.* 2008).

plant productivity). However, the existence of essential carbon has a large positive impact on plant productivity, (Brooker *et al.* 2008).

Methodology:

Study Area: This research was carried out in the Protected Areas (Lal Suhanra National park and Cholistan Wildlife Sanctuary) of Bahawalpur District. **Lal Suhanra National Park:** Lal Suhanra National Park (LSNP) having an area of 162567 acres (Survey Punjab Wildlife and Parks Department 2022) is located between 29° 12' and 29° 28' northern latitude and 71° 48' and 72° 08' eastern longitudes, with an altitude from 125 to 140m, in south east Punjab, Pakistan. The area is highly diversified by flora and fauna, to conserve these resources the area was notified as national park in 1972. LSNP is of monstrous worth because of irrigated plantation, enclosures of wildlife, recreation facilities as well as fishing in the lake (Wariss et al., 2014).

Cholistan Wildlife Sanctuary: The Cholistan desert is a section of the world's seventh biggest desert, the Great Desert, which is extended along the south line of Punjab, Pakistan. The area of the Cholistan desert is 660,921 ha; it is situated 29° 59' North as well as 73° 16' East at an altitude of 112m.

Soil and Climate: Due to insignificant amount of organic matter, the soil of Cholistan desert is

considered as poor. The Lesser Cholistan is described by huge saline compacted with alluvial soil (interdunal flats), which are generally stabilized to semistabilized. Soil of interdunal sites differs in surface, structure, and the degree of salinity and sodicity with pH ranges from 8.2 to 9.6. Sand dunes are much lower (under 100 meters) than those found in Greater part. Cholistan desert is, severe dry and long summer droughts which may extend for 4-6 years consistently. Mean summer temperature varies from 35 to 50° C during May to June. Annual precipitation is low ranging from 100 to 250 mm with its maximum during July to September during monsoons High temperatures, low humidity, and high rate of evapotranspiration change the desert into a demise valley with incredibly cruel conditions during summers (Hameed et al., 2011).

Impact of Carbon stock on wild flora and fauna

On the basis of stratification, vegetation structure and animal diversity by direct and indirect observations was determined.

Method of Direct observation

This study was conducted in two sections: field study and library method during whole research time period throughout the study area. During field study, all present vegetation structure including trees, shrubs, herbs and grasses and animal diversity including reptiles, birds and mammals within the area was identified by visual or vocalization (direct observation) and applying a 10×50mm binocular. Library resources was referred for complementary studies.

For direct observation of wild flora and fauna Line transect method was used. Vegetation and animal diversity including mammals, reptiles and birds was sampled along striped transect. Permanent 80 by 80m (0.64 ha) study sites was selected for sampling diversity of animals and vegetation characteristics throughout the study area. For birds' inventory, permanent transects of 805 by 62m (4.9 ha) was established. Samples was collected by moving along transects on consecutive days every week, starting at sunrise and continuing for 4-5 hours. Average walking time was 25 to 40 minutes per transect. All vegetation (Trees, Shrubs, Herbs and grasses) and Animal Diversity (Reptiles, Mammals and Birds which flew over transect) was identified by visual or vocalization (Agnew et al., 1986) (Ahmadpour et al., 2012).

Method of Indirect observation

The methodology that diminish every partiality as well as develop accuracy of large quantity estimations, was utilization of belt transect method used for the estimation of pellets. This strategy was utilized for current research along with minor adjustments in calculation of pellets that was alternatively call as "Transect Count Method". Such techniques included to follow a transect track of specific length (five to ten kilometers for every track), moreover width (one to five meters on every side, depends upon visuals) all through research area. Along track/transect every one of the pallets/droppings of various animals was recognized. This process was followed all over the transect length and was start moving back along the same path again, on reaching the end point of transect taking in count the droppings (new one) of various animals. As moving reverse by the side of similar trail, all the droppings which were noticed before was neglected and counted only those droppings which were not confirmed previously. This technique was followed until the initial position was reached. At every research area, various probable pairs of survey tracks were made through arbitrarily picked way to cover a distance of five to ten kilometers for each track with a sighting detection limit of one meter on every side. Track pathways was picked for the survey including all possible habitat types that incorporates field patches, woods edges, timberland regions with slim shelter cover and thick forest regions with close shade cover. These tracks were made between 10:30 a.m. to 5:30 p.m. In this way, all the possible vegetation and animal diversity were identified (Jain et al., 2011).

Results

Impact of carbon on Flora and Fauna:

The current study investigates the impact of carbon on flora and fauna. No such studies have been reported earlier in desert or in such any other ecosystem. Amount of carbon in soil substratum always play crucial role for the stability of desert ecosystem. Soil organic matter releases essential nutrients for plant growth after its decomposition. It is very helpful to increase the water holding capacity of the soil and microbial activities. The above said discussion is important for the floral diversity and its productivity. The more the soil organic carbon, the more the ecosystem stability which results in proper ecosystem functioning.

Flora of Lal Suhanra National Parks (LSNP):

http://xisdxjxsu.asia

During the Flora study of Lal suhanra National park (LSNP), we identified 40 families including 103 Genus and 143 species (Table 1). Largest recorded family was Poaceae having 20 genus and 28 species. Family Fabaceae, Zygophyllaceae, Asteraceae, Papilionaceae have 5 while Cucurbitaceae, Aizoaceae, Typhaceae, Asclepiadaceae, Chenopodiaceae have 4 genera. Genus Aristida and Zizyphus have 4 species, while genus Cenchrus, Cleome, Convolvulus, Eragrostis, Haloxylon, Prosopis have 3 species from LSNP as shown in Figure 1. Number of species in each genus from CWLC are shown in figure 1. Table 2 describe the Pearson Correlation between CWLS and LSNP and showing the strong positive correlation.

Fauna of Lal Suhanra National Park and Cholistan Wildlife Sanctuary:

Amount of carbon has great impact of wild flora and fauna as the changing climate always shifting the vegetation from southern zones to northern polar region. During the study we have found 25 families of birds including 36 genera and 39 species. Largest families were Accipitridae, having 5 genera. Largest genera in birds were Pterocles, Dicrurus and Falco having two species. Rest of the genera has 1 species as shown in table 3. We have found 16 families of mammals including 25 genera and 31 species (Table 4). Largest family was Muridae having 6 genera. Reptiles contribute 9 families of reptiles including 14 genera and 15 species. Largest family was Colubridae, has 3 while Agamidae, Elapidae and Gekkonidae have 2 genera. All of the genera have 1 species in each except Eryx having 2 species as shown in table 5.

Total number of species in both habitats (CWLS and LSNP) are described in figure 4 which indicates that the number of species is higher in LSNP than the CWLS. Among these, birds are present in abundance in LSNP following the amounts of mammals and reptiles respectively. Number of species from each genus are shown in figure 2 and 3.

Figure 2: No. of species of birds, mammals and reptiles in each genus from LSNP

Fig 3. No. of species of birds, mammals and reptiles in each genus from CWLS

Sr. no.	Family	Genus	Species	Local name	Habit
1	Malvaceae	Abutilon	Abutilon indicum	Gidawar	Herb
			Abutilon muticum	Gidawar	Herb
		Bombax	Bombax ceiba	Simal	Tree
2	Convolvulaceae	Convolvulus	Convolvulus	Hiran Booti	Herb
			prostrartus		
			C. scindicus	Hiran Booti	Herb
			C. stocksii	Hiran Booti	Herb
		Cressa	Cressa cretica	Oine	Herb
3	Ephedraceae	Ephedra	Ephedra ciliata	Phoge	Shrub
4	Polygonaceae	Calligonum	Calligonum	Phog	Shrub
			polygonoides		
5	Zygophyllaceae	Fagonia	Fagonia bruguieri	Dhman	Herb
			F. indica	Dhman	Herb
		Peganum	Peganum harmala	Harmal	Herb
		Seetzenia	Seetzenia lanata	Bhakra	Herb
		Tribulus	T. longipetalus	Bhakra	Herb
			Tribulus	Bhakra	Herb
			ochroleucus		
		Zygophyllum	Zygophyllum	Alethi, Lonak	Herb
			simplex		
6	Orobanchaceae	Cistanche	Cistanche tubulosa	Phaphorr/	Herb
				Desert	
				Hyacinth	
7	Capparidaceae	Capparis	Capparis decidua	Kareer	Shrub
			C. spinose	Kubbar	Shrub
		Cleome	Cleome	Noli, Kasturi	Herb
			brachycarpa		
			C. scaposa	Noli, Kasturi	Herb
			C. viscosa	Noli, Kasturi	Herb
					<u> </u>
		Dipterygium	Dipterygium	Fehl.	Shrub
0			glaucum		TT 1
8	Neuradaceae	Neurada	Neurada	Chappari	Herb
0			procumbens		T
9	Salvadoraceae	Salvadora	Salvadora oleoides	Jal, Pilu	Tree
10	T		Salvadora persica	Wan	Tree
10	1 amaricaceae	Tamarix	Tamarix aphylla	Uknan, Farash	Iree
11			Tamarix dioica	La1	Snrub
11	Oxalidaceae	Oxalis	Oxalis corniculata	Khatti buti	Herb
12	Cucurbitaceae	Citrullus	Citrullus	Kore Tomma	Herb
1	1		colocynthis	1	1

Table 1. Flora of Lal Suhanra National Parks (LSNP) and Cholistan Wildlife Sanctuary

		Cucumis	Cucumis melo	Chibberh, Gwalaa	Herb
		Mukia	Mukia	Kolzlari	Uarb
		Μιακία	maderaspatana	Kakkii	Herb
		Praecitrullus	Praecitrullus	Jangli	Herb
			fistulosus	Tindey	
13	Molluginaceae	Glinus	Glinus lotoides	Phatokad	Herb
		Mollugo	Mollugo cerviana	Paddi	Herb
14	Nyctaginaceae	Boerhavia	Boerhavia	Bishkhira	Herb
	• •		procumbens		
15	Tiliaceae	Corchorus	Corchorus	Bao Phali	Herb
			depressus		
16	Cyperaceae	Cyperus	Cyperus	Monghan	Sedge
			conglomeratus	C C	C
			Cyperus rotundus	Deela	Sedge
17	Asphodelaceae	Asphodelus	Asphodelus	Piazii	Herb
	•	1	tenuifolius		
18	Amaranthaceae	Aerva	Aerva javanica	Buie	Shrub
			Aerva	Buie	Shrub
			pseudotomentosa		
		Amaranthus	Amaranthus	Tandlaa	Herb
			graecizans		
			Amaranthus viridis	Tandulaa	Herb
19	Aizoaceae	Gisekia	Gisekia	Balooka Saag	Herb
			pharnaceoides		
		Limeum	Limeum indicum	Barri Ulwaity	Herb
		Sesuvium	Sesuvium	Wisaah	Herb
			sesuvioides		
		Trianthema	Trianthema	Choti Ulwaity	Herb
			portulacastrum		
			Linn.		
			Trianthema	Itsit, Wisaah	Herb
			triquetra		
20	Caesalpiniaceae	Cassia	Cassia italica	Desi Sanas	Shrub
21	Rhamnaceae	Zizyphus	Ziziphus mauritiana	Beri	Tree
			Ziziphus	Beri, Ber	Tree
			nummularia		
			Ziziphus spina-	Beri	Tree
			christi		
			Ziziphus jujuba	Beri	Tree
22	Asteraceae	Echinops	Echinops echinatus	Ont kataara	Herb
		Eclipta	Eclipta alba	Bhangda	Herb
		Launaea	Launaea nudicaulis	Bhattale	Herb
			L. resedifolia.	Dudhkale	Herb
		Pulicaria	Pulicaria crispa	Bareem Dandi	Sub-
			*		Shrub

		Xanthium	Xanthium	Buie	Shrub
			strumarium.		
23	Fabaceae	Prosopis	Prosopis glandulosa	Maskit	Shrub
			Prosopis juliflora	Maskit	Tree
			Prosopis cineraria	Jandi	Tree
		Vachellia	Vachellia nilotica	Kikar	Tree
			Vachellia	Kikri	Shrub
			jacquemontii		
		Pongomia	Pongomia pinnata	Sukh chain	Tree
		Dalbergia	Dalbergia sissoo	Shisham	Tree
		Albezzia	Albezzia procera	White siris	Tree
			Albezzia lebbeck	Black siris	Tree
24	Typhaceae	Typha	Typha domingensis	Kundeer	Herb
			T. angustifolia	Narrow leaf cattail	Herb
		Physalis	Physalis divaricate	Mamooly	Herb
		Solanum	Solanum surattense	Kandiari	Herb
		Withania	Withania coagulens	Paneer	Shrub
			Withania somnifera	Aksen	Shrub
25	Portulacaceae	Portulaca	Portulaca oleracea	Lonak	Herb
			<i>Portulaca</i>	Lonak	Herb
26	Asclaniadacaaa	Calotropis	<i>Qualifica</i>	Aak	Shruh
20	Asciepiauaceae	Caralluma	Caralluma adulis	Aak Seetu Pinnun	Herb
		Lentadenia	Lentadenia	Khin	Shruh
		Беріййстій	pyrotechnica	Kinp	Sinuo
		Oxystelma	Oxystelma	Dudhani	Herb
			esculentum	2	
			Oxystelma spiralis	Dudhani	Herb
27	Chenopodiaceae	Chenopodium	Chenopodium album	Bathuoo	Herb
		Haloxylon	Haloxylon	Laana	Shrub
		, i i i i i i i i i i i i i i i i i i i	salicornicum		
			Haloxylon stocksii	Khaar,	Shrub
			Haloxylon	Khaar	Shrub
			recurvum		
		Salsola	Salsola imbricata	Laani	Shrub
		Suaeda	Suaeda fruticosa	Kali Laani	Shrub
28	Euphorbiaceae	Chrozophora	Chrozophora sabulosa	Nilkari	Herb
		Euphorbia	Euphorbia granulata	Hazaar Daani	Herb
			E. indica	Hazaar Daani	Herb
		Heliotropium	Heliotropium	Kali Buie	Sub-
			crispum		Shrub
			Heliotropium	Gorakh Pen	Herb
			strigosum	_	

29	Brassicaceae	Farsetia	Farsetia hamiltonii	Farid Boti	Shrub
			F. jacquemontii	Farid Boti	Shrub
30	Papilionaceae	Alhagi	Alhagi maurorum	Jawahan	Shrub
		Crotalaria	Crotalaria burhia	Chag	Shrub
		Melilotus	Melilotus officinalis	Sinji	Herb
		Sesbania	Sesbania bispinosa	Jintar	Shrub
		Tephrosia	Tephrosia purpurea	Jhill	Shrub
31	Poaceae	Aeluropus	Aeluropus	Kalar ghaa	Grass
			lagopoides		
		Aristida	Aristida	Laumb	Grass
			adscensionis		
			A. funiculate	Laumb	Grass
			A. hystricula	Laumb	Grass
			A. mutabilis	Laumb	Grass
		Brachiaria	Brachiaria ramosa	Bhorrat	Grass
		Cenchrus	Cenchrus biflorus	Dhamaan	Grass
			C. ciliaris	Dhamaan	Grass
			C. prieurii	Dhamaan	Grass
		Chloris	Chloris gayana	Chloris	Grass
		Cymbopogon	Cymbopogon	Khawi, Kettran	Grass
			jwarancusa		
		Cynodon	Cynodon dactylon	Tallah	Grass
		Dactyloctenium	Dactyloctenium aegyptium	Dabb	Grass
		Desmostachya	Desmostachya bipinnata	Dib	Grass
		Digitaria	Digitaria sanguinalis	Ghaah	Grass
		Echinochloa	Echinochloa colona	Dhui	Grass
		Enneapogon	Enneapogon	Sanawakri	Grass
			desvauxii		
		Eragrostis	E. ciliaris	Makni	Grass
			E. japonica	Makni	Grass
			E. minor	Makni	Grass
		Leptothrium	Leptothrium	Sevan, Ghorka	Grass
			senegalense		
		Panicum	Panicum antidotale	Gandeel	Grass
			P. turgidum	Morrot, Bansi	Grass
		D		ghaa	0
		Pennisetum	Pennisetum divisum	Bansi ghaa	Grass
		Phalaris	Phalaris minor	Dumbi citi	Grass
		Polypogon	Polypogon	Sarkanda,	Grass
		Sach arrow	<i>monspellensis</i>	Kanyy Soobii Sor	Cross
		Saccharum	bangalansa	Sacini Sar	Grass
		Sporobolus	Sporobolus icolados	Swag	Grass
		Sporodolus	sporoooius iociudos	Jwag	01855
32	Moraceae	Ficus	Ficus virens	Pilkan	Tree

		Morus	Morus Alba	Toot	Tree
33		Conocarpus	Conocarpus erectus	Conocarpus	Tree
	Combretaceae	Terminalia	Terminalia arjuna	Arjun	Tree
34	Boraginaceae	Cordia	Cordia myxa	Lasura	Tree
35	Meliaceae	Melia	Melia azedarach	Bakain	Tree
		Azadirachta	Azadirachta indica	Neem	Tree
36	Myrtaceae	Eucalyptus	Eucalyptus cameldulensis	Sufaida	Tree
			Eucalyptus citrodora	Sufaida	Tree
		Syzygium	Syzygium cumini	Jaman	Tree
		Melaleuca	Melaleuca viminalis (Redirected from Callistemon viminalis)	Bottle brush	Tree
37	Bignoniaceae	Tecomella	Tecomella undulata	Tecoma/Lahura	Tree
38	Anacardiaceae	Mangifera	Mangifera indica	Mango	Tree
39	Moringaceae	Moringa	Moringa oleifera	Sohanjna	Tree
40	Arecaceae	Pheonix	Pheonix dactylifera	Khajor/Date palm	Tree

Fig 1. No. of species in each genus from Lal Sohanra National Parks (LSNP) and Cholistan Wildlife Sanctuary (CWLS)

	CWLS	LSNP
Pearson Correlation	1	.999**
Sig. (1-tailed)		.000
Sum of Squares and Cross- products	14770.115	17134.500
Covariance	143.399	166.354
Ν	104	104
Pearson Correlation	.999**	1
Sig. (1-tailed)	.000	
Sum of Squares and Cross- products	17134.500	19909.500
Covariance	166.354	193.296
Ν	104	104

Table 2: Pearson Correlation between CWLS and LSNP

**. Correlation is significant at the 0.01 level (1-tailed)

Table 3: List of No. of birds from LSNP and CWLS

Sr. no.	Family	Genus	Species	Local name	Status
1.	Laniidae	Lanius	Lanius excubitor	Greater grey shrike	LC
2.	Motacillidae	Motacilla	Motacilla alba	Pied wagtail	LC
3.	Phasianidae	Francolinus	Francolinus francolinus	Black partridge	LC
		Ortygornis	Ortygornis pondicerianus (Redirected from Francolinus pondicerianus)	Grey francoline	LC
4.	Pteroclidae	Pterocles	Pterocles indicus Pterocles	Painted Sandgrouse Black-bellied	LC LC
			orientalis	sandgrouse	
5.	Accipitridae	Buteo	Buteo buteo	Common buzzard	LC
		Butastur	Butastur teesa	White Eyed Buzzard	LC
		Aquila	Aquila rapax	Tawny eagle	VU

		Circus	Circus macrourus	Harrier	NT
		Accipiter	Accipiter nisus	Indian sparrow hawk	LC
6.	Sturnidae	Pastor	Pastor roseus	Rosy Starling	LC
		Sturnus	Sturnus vulgaris	Common starling	LC
7.	Ardeidae	Egretta	Egretta garzetta	Little egret	LC
		Bubulcus	Bubulcus ibis	Cattle egret	LC
		Ardeola	Ardeola grayii	Pond heron	LC
8.	Columbidae	Streptopelia	Streptopelia decaocto	Indian collard dove	LC
		Spilopelia	Spilopelia senegalensis (Redirected from streptopelia senegalensis)	Little brown dove	LC
9.	Meropidae	Merops	Merops orientalis	Small greenbee eater	LC
10.	Coraciidae	Coracias	Coracias bengalensis	Indian roller	LC
11.	Charadriidae	Vanellus	Vanellus indicus	Red Wattled Lapwing	LC
12.	Dicruridae	Dicrurus	Dicrurus adsimilis	Fork-tailed drongo	LC
			Dicrurus macrocercus	Black Drongo	LC
13.	Scolopacidae	Actitis	Actitis hypoleucos	Common sand piper	LC
14.	Passeridae	Passer	Passer montanus	Tree sparrow	LC
15.	Pycnonotidae	Pycnonotus	Pycnonotus leucotis	White-eared bulbul	LC
16.	Upupidae	Upupa	Upupa epops	Ноорое	LC
17.	Leiothrichidae	Argya	Argya caudata (Redirected from Turdiodes caudatus)	Common Babbler	LC

18.	Otididae	Chlamydotis	Chlamydotis undulate	Houbara bustard	VU
		Ardeotis	Ardeotis nigriceps	Great Indian bustar	CR
19.	Alaudidae	Galerida	Galerida cristata	Crested Lark	LC
		Ammomanes	Ammomanes deserti	Desert lark	LC
20.	Recurvirostridae	Himantopus	Himantopus himantopus	Black winged stilt	LC
21.	Muscicapidae	Saxicola	Saxicola caprata	Pied bush chat	LC
22.	Sylviidae	Curruca	Curruca nana	Asian desert warbler	LC
23.	Strigidae	Athene	Athene brama	Spotted owl	LC
24.	Picidae	Dinopium	Dinopium benghalense	Golden- backed woodpecker	LC
25.	Falconidae	Falco	Falco biarmicus jugger	Lagar falcon	NT
			Falco cherrug	Saker falcon	EN

Table 4: List of mammals from LSNP and CWLS

Sr. no.	Family	Genus	Species	Local name	Status
		Caracal	Caracal caracal	Indian caracal	LC
1.		Felis	Felis lybica	Desert cat	LC
	Felidae		Felis chaus	Jungle cat	LC
			Felis sylvestris ornate	Indian desert cat	EN
			Felis margarita	Desert cat	LC
2.	Muridae	Rattus	Rattus rattus	House rat	LC

			Mus musculus	House mouse	LC
		Mus	Mus booduga	Little Indian field mouse	LC
		Meriones	Meriones hurrianae	Indian desert jird	LC
		Gerbillus	Gerbillus gleadowi	Indian hairy- footed gerbil	LC
		Nesokia	Nesokia indica	Short-tailed mouse rat	LC
		Tatera	Tatera indica	Indian Gerbil	LC
3.	Hystricidae	Hystrix	Hystrix indica	Indian Porcupine	LC
		Herpestes	Herpestes Mungo	Indian Mongoose	LC
4.	Herpestidae	Urva	Urva auropunctata	Small Indian mongoose	LC
			U. edwardsii	Grey mongoose	LC

5.	Rhinopomatidae	Rhinopoma	Rhinopoma microphyllum	Large-tailed mouse bat	LC
6.	Vespertilionidae	Scotophilus	Scotophilus heathii	Greater yellow house bat	LC
7.	Suidae	Sus	Sus scrofa cristatus	Indian Wild boar	LC
8.	Leporidae	Lepus	Lepus nigricollis	Desert hare	LC
		Vulpes	Vulpes Vulpes	Desert fox	LC
9.	Conidoo	Cania	Canis lupus	Wolf	LC
	Canidae	Canis	Canis aureus	Jakal	LC
10.	Trionvchidae	Aspiderete	Aspiderete gangeticus	Indian soft-shell turtle	EN
11.	Trionychidae	Axis	Axis axis	Spotted deer	LC
12.	Cervidae	Gazella	Gazella bennettii	Chinkara	LC
13.	Bovidae	Antilope	Antilope cervicapra	Black buck	NT
		Bovinae	Boselaphus tragocamelus	Nilgai	LC
14.	Erinaceidae	Hemiechinus	Hemiechinus auratus	Hedgehog	LC
15.	Manidae	Manis	Manis crassicaudata	scaly anteater	EN
16.	Mustelidae	Mellivora	Mellivora capensis	Honey badger	LC

Table 5: List of reptiles from CWLS and LSNP

Sr. no.	Family	Genus	Species	Local name	Status
1.	Elapidae	Naja	Naja naja	Black Cobra	LC
		Bungarus	Bungarus caeruleus	Common krait	LC
2.	Boidae	Eryx	Eryxx johnii	Common sand boa	NT
			Eryx conicus	Sand boa	NT
3.	Gekkonidae	Cyrtopodion	Cyrtopodion scabrum	Common tuberculate ground gecko	LC
		Hemidactylus	Hemidactylus brookii	Spotted house gecko	LC
4.	Typhlopidae	Indotyphlops	Indotyphlops braminus	Brahminy blind snake	LC
5.	Agamidae	Saara	Saara hardwickii (Redirected from Uromastyx hardwickii)	Spiny Tailed Lizard	С
		Calotes	Calotes versicolor	Common tree lizard	LC
6.	Lacertidae	Acanthodactylus	Acanthodactylus cantoris gunther	Blue-tailed sand lizard	EN
7.	Viperidae	Echis	Echis carinatus	Saw-scaled viper	LC
8.	Colubridae	Fowlea	Xenochrophis piscator	Checkered Keelback	LC
		Spalerosophis	Spalerosophis arenarius	Red spotted diadem snake	LC
		Lycodon	Lycodon aulicus	Wolf snake	LC
9.	Varanidae	Varanus	Varanus bengalensis	common Indian monitor	LC

Fig 4. No. of species in CWLS and LSNP

Fig 5. Biomass and carbon stock of desert and Lal-suhanra

Discussions:

Flora

Tree diversity near water bodies in Cholistan was 0.0116/m². Overall floral diversity in Cholistan wildlife sanctuary was 0.015 plant per meter square. These results are correlated with Jhariya and Singh, (2021). Plant diversity vary under various climatic regimes. Jhariya and Singh, (2021) described the various herb related diversity against numerous fire regimes. They found maximum biological diversity under medium fire zones in dry terrestrial ecosystem. Furthermore, over story and understory

vegetation species composition and carbon pool vary against multiple factors (Jhariya, 2017), vegetation management regimes (Ares et al., 2009), Soil moisture, nutrient status (Newbery et al., 1996), anthropogenic disturbance regimes (Oraon et al. 2014, 2015; Jhariya et al., 2014, 2014; Kittur et al., 2014; Jhariya 2017).

During the Flora study of Lal suhanra National park, we identified 40 families including 103 Genus and 143 species while in Cholistan wildlife sanctuary these results concluded 31 families including 85 genus and 123 species. These results are correlated with Kaushal and Baishya (2021), they examined 1280.9Mg/ha biomass production, 577.77Mg/ha carbon pool and species richness were 21.

Different forest ecosystems (Mixed and pure forest) have different biomass productivity, carbon pool and species richness (Kaushal and Baishya, 2021). Similar kind of results was collected during current study as we have studied two ecosystems (Lal Suhanra National park and Cholistan wildlife sanctuary) and found different species difference, and species richness.

Singh and Singh 1986; Singh and Singh 1987; Rai et al. 2012 found regeneration loss in different ecosystem (pure and mixed) that ultimately reduced the diversity and carbon pool of the regions while Cholistan wildlife sanctuary and Lal suhanra national park have severe drought conditions that receive less than 200mm annual rainfall. These severe environmental factors are directly

proportional to the biomass productivity, species richness and carbon stock. The total carbon stock of Cholistan wildlife sanctuary was 87.91 gm/m² and total biomass calculated was 175.83 gm/m² while total carbon stock in Lal suhanra National park 21.51404883 m³/m² and total biomass was 45.179 m³/m² as shown in figure 5. Natural ecosystems are the key source of above and below ground carbon and food source in the world (Vicharnakorn et al., 2014). Reduction in biological diversity always leads to the diminution of stored carbon stock that run the natural ecosystems.

Fauna

The ecosystem stability fundamentally depends upon the amount of carbon present in the soil. The soil carbon is essential for soil physiochemical and microbial activity that ultimately leads to stability and enhance productivity. The more the plant production higher will be herbivores (secondary producers). The more the stable ecosystem greater will be the biological diversity.

Cholistan wildlife sanctuary and Lal-Suhanra National park have great potential regarding wildlife species. There is no such evidence of enlisting wildlife species from Cholistan as well as Lal Suhanra National Park. Khan et al., (2004), the only researcher who worked about nature resourse diversity in Cholistan in which he enlisted a few of wildlife species present there. We witnessed all of the enlisted species provided by Khan et al., (2004) and also encountered some of other species in Cholistan Wildlife sanctuary as shown in table 3, 4 & 5.

Animal diversity always leads to continuity of life, economic interest and ecosystem functioning (Singh, 2002). Genetic and species diversity are the most common types of biological diversity (Ardakani, 2004). Usually the animal diversity varies with the changing environmental factors, topographic factors and altitude (Maranon et al., 1999; Ahmadpour et al., 2012). Our findings about 42 families, 59 genus and 64 species in Lal suhanra National Park and 30 families, 39 genus and 42 species in Cholistan Wildlife sanctuary are correlated with Maranon et al., (1999) who described various species, genus and families under different ecosystems based on their topography, altitude and environmental factors.

Schmitz et al., 2018 studied the effect of zoogeochemicals on diversity of animals in nature. They reviewed a large range of animal's diversity in different taxas which may increase or decrease with the changing zoo-geochemistry of earth surface. Our results as shown in figure 4 are very similar to Schmitz et al., 2018, during our research period we have found move diversity of of birds including 28 species, mammals including 24 species and reptiles have 12 species in LSNP while birds include19 species, mammals 15 species and reptiles have 08 species in CWLS.

References

Agnew, W., D. W. UreskandR. M. Hansen. 1986. Flora and fauna associated with prairie dog

colonies and adjacent ungrazed mixed-grass prairie in western South Dakota. *Journal of Range Management* 39(2): 135-139.

- Ahmadpour, M., Ahmadpour, M., Hoseini, S. H., Ghasempouri, S. M., Jafari, A., SinkaKarimi, M. H., & Amouie, H. (2012).
 A survey on the flora and the fauna of the Fereydunkenar International wetland for better conservation management. *Journal of Biodiversity* and *Environmental Sciences*, 2(10), 17-26.
- Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., ... & Fischer, M. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology letters, 18(8), 834-843.
- Alsterberg, C., Roger, F., Sundbäck, K., Juhanson,
 J., Hulth, S., Hallin, S., & Gamfeldt, L.
 (2017). Habitat diversity and ecosystem multifunctionality—The importance of direct and indirect effects. Science Advances, 3(2), e1601475.
- Ardakani MR. 2004. Ecology. Tehran University Publishing, p. 340.
- Ares, A., Berryman, S. D., & Puettmann, K. J. (2009). Understory vegetation response to thinning disturbance of varying complexity in coniferous stands. *Applied Vegetation Science*, 12, 472–

487. <u>https://doi.org/10.1111/j.1654-</u> 109X.2009.01042.x.

- Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J.
 S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. *Ecology letters*, 9(10), 1146-1156.
- Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G.,
 ... & Michalet, R. (2008). Facilitation in plant communities: the past, the present, and the future. *Journal of ecology*, 18-34.
- Chapin Iii, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., ... & Díaz, S. (2000). Consequences of changing biodiversity. *Nature*, 405(6783), 234-242.
- Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., ... & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences, 115(16), 4027-4032.
- Fornara, D. A., & Tilman, D. (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. *Journal of Ecology*, 96(2), 314-322.
- Hooper, D. U., Bignell, D. E., Brown, V. K.,Brussard, L., Dangerfield, J. M., Wall, D.H., ... & Wolters, V. (2000). Interactionsbetween Aboveground and Belowground

BiodiversityinTerrestrialEcosystems:Patterns,Mechanisms,andFeedbacks.Bioscience, 50(12), 1049-1061.

- Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector,
 A., Inchausti, P., Lavorel, S., ... & Wardle,
 D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological monographs*, 75(1), 3-35.
- Jain, M., S. Utpal and S. Mukhopadhyay. 2011. Indirect Evidences of Wildlife Activities in Shoals of Western Ghats, a Biodiversity Hotspots. *Vestnikzoologii* 45(2): e-33.
- Jhariya, M. K. (2017a). Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environmental Monitoring and Assessment, 189(10), 1– 15. <u>https://doi.org/10.1007/s10661-017-</u> 6246-2.
- Jhariya, M. K., & Singh, L. (2021). Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. *Environment, Development and Sustainability*, 23(5), 6800-6818.
- Jhariya, M. K., Bargali, S. S., Swamy, S. L., & Kittur, B. (2012). Vegetational structure, diversity and fuel loads in fire affected areas of tropical dry deciduous forests in Chhattisgarh. *Vegetos*, 25(1), 210–224.
- Jhariya, M. K., Bargali, S. S., Swamy, S. L., Kittur, B., Bargali, K., & Pawar, G. V. (2014).

Impact of forest fire on biomass and carbon storage pattern of tropical deciduous forests in Bhoramdeo wildlife sanctuary, Chhattisgarh. *International Journal of Ecology and Environmental Sciences, 40*(1), 57–74.

- Kaushal, S., & Baishya, R. (2021). Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. *Ecological Processes*, 10, 1-18.
- Khan, A. A., Chaudhry, M. S., & Aziz, S. (2004).
 Natural resource diversity in cholistan desert (Pakistan) and possible conservational measures. *J. Pure App. Sci*, 23(1), 25-47.
- Kittur, B., Swamy, S. L., Bargali, S. S., & Jhariya,
 M. K. (2014). Wildland fires and moist deciduous forests of Chhattisgarh, India: Divergent component assessment. *Journal of Forestry Research*, 25(4), 857–866. <u>https://doi.org/10.1007/s11676-014-</u>0471-0.
- Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. *science*, *304*(5677), 1623-1627.
- Lange, M., Eisenhauer, N., Sierra, C. A., Bessler,
 H., Engels, C., Griffiths, R. I., ... & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature communications, 6(1), 6707.

- Levine, J. M. (2000). Species diversity and biological invasions: relating local process to community pattern. *Science*, 288(5467), 852-854.
- Lozano, Y. M., Aguilar-Trigueros, C. A., Onandia,
 G., Maaß, S., Zhao, T., & Rillig, M. C.
 (2021). Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology, 58(5), 988-996.
- Manning, P., Van Der Plas, F., Soliveres, S., Allan,
 E., Maestre, F. T., Mace, G., ... & Fischer,
 M. (2018). Redefining ecosystem
 multifunctionality. Nature ecology & evolution, 2(3), 427-436.
- Maranon T, Ajbilou R, Ojeda F, Arroyo J. 1999. Biodiversity of woody species in oak woodland of southern Spain and northern Morocco. Forest Ecology and Management 115, 147-156.
- Newbery, D. M., Campbell, E. J. F., Proctor, J., & Still, M. J. (1996). Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey. *Vegetatio*, *122*, 193–220. https://doi.org/10.1007/BF00044700.
- Oraon, P. R., Singh, L., & Jhariya, M. K. (2014).
 Variations in herbaceous composition of dry tropics following anthropogenic disturbed environment. *Current World Environment*, 9(3), 967–979. https://doi.org/10.12944/CWE.9.3.50.

- Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., ... & Field, C. B. (2001). Consistent land-and atmosphere-based US carbon sink estimates. *Science*, 292(5525), 2316-2320.
- Rai ID, Adhikari BS, Rawat GS, Bargali K (2012) Community structure along timberline ecotone in relation to micro-topography and disturbances in Western Himalaya. Not Sci Biol 4(2):41–

52. https://doi.org/10.15835/nsb427411.

- Sala, O. E., Stuart Chapin, F. I. I. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., ... & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. science, 287(5459), 1770-1774.
- Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J. M., Kowarik, I., ... & Joshi, J. (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110(4), 916-934.
- Schmitz, O. J., Wilmers, C. C., Leroux, S. J., Doughty, C. E., Atwood, T. B., Galetti, M., ... & Goetz, S. J. (2018). Animals and the zoogeochemistry of the carbon cycle. Science, 362(6419), eaar3213.
- Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53(1):80– 192. https://doi.org/10.1007/BF02858183.

http://xisdxjxsu.asia

- Singh JS. 2002. The biodiversity crisis: a multifaceted review. Current Science 82, 499-500.
- Singh SP, Singh JS (1986) Structure and function of the Central Himalayan oak forests. Proc Indian Acad Sci (Plant Sci) 96(3):159–189.
- Spehn, E. M., Hector, A., Joshi, J., Scherer-Lorenzen, M., Schmid, B., Bazeley-White, E., ... & Lawton, J. H. (2005). Ecosystem effects of biodiversity manipulations in European grasslands. *Ecological monographs*, 75(1), 37-63.
- Tilman, D., Hill, J., & Lehman, C. (2006a). Carbonnegative biofuels from low-input highdiversity grassland biomass. Science, 314(5805), 1598-1600.
- Tilman, D., Reich, P. B., & Knops, J. M. (2006b). Biodiversity and ecosystem stability in a decade-long grassland experiment. *Nature*, 441(7093), 629-632.
- Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. *Science*, 294(5543), 843-845.
- van Ruijven, J., & Berendse, F. (2005). Diversity– productivity relationships: initial effects, long-term patterns, and underlying mechanisms. *Proceedings of the National Academy of Sciences*, 102(3), 695-700.
- Vicharnakorn, P., R. P. Shrestha, M. Nagai, A. P. Salam and S. Kiratiprayoon. 2014. Carbon stock assessment using remote sensing and

forest inventory data in Savannakhet, Lao PDR. *Remote Sensing* 6(6): 5452-5479.

- Wardle, D. A. (1999). Is" sampling effect" a problem for experiments investigating biodiversity-ecosystem function relationships? *Oikos*, 403-407.
- Wolters, V., Silver, W. L., Bignell, D. E., Coleman,
 D. C., Lavelle, P., Van Der Putten, W. H., ...
 & Van Veen, J. A. (2000). Effects of Global
 Changes on Above-and Belowground
 Biodiversity in Terrestrial Ecosystems:
 Implications for Ecosystem Functioning: *Bioscience*, 50(12), 1089-1098.