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Abstract 

A seventh order second derivative method with optimized hybrid points is proposed for the 

solution of first-order ordinary differential equations. The techniques of interpolation and 

collocation are employed for the construction of the method using a three-parameter 

representation of the hybrid points. By optimizing the local truncation error of the main 

method, the hybrid points are obtained and then used to derive second derivative method. 

The discrete schemes are produced as by-products of the continuous scheme and used to 

simultaneously solve initial value problems (IVPs) in block mode. The resulting schemes are 

self-starting, consistent, zero-stable, and A-Stable. The accuracy of the method was 

established using four test problems. The numerical results revealed that the new method 

performed better than existing methods in the cited literature. 

Keywords: Initial Value Problems (IVPs), Local truncation error (LTE), Ordinary 

Differential Equations (ODEs), Parameter approximations, Second derivative 

 

1 Introduction 

Differential equations are produced through the mathematical modeling of physical 

processes in the scientific and engineering fields, particularly in epidemiological systems 

with numerous interactions among various compartments. The analytical solutions to the 

majority of differential equations are typically difficult to find. This demanded the use of 

numerical techniques to provide an approximate solution. Traditionally, the numerical 

approximations of the exact solutions to ODEs are obtained using Runge-Kutta and linear 

multi-step approaches. However, the constant research in this field focuses on creating new 

techniques that are both efficient and simple in structure, while also possessing strong stability 

features.  

The purpose of this article is to create and evaluate a new and effective numerical integration 

method for solving initial value problems of the form  

𝑣′ = 𝑓(𝑡, 𝑣), 𝑣(𝑡0) =  𝑣0 
(1) 

where t is a variable in the interval [𝑡0, 𝑇], 𝑣 ∶  [𝑡0, 𝑇]  →  𝑅, and 𝑓 ∶  [𝑡0, 𝑇]  ×  𝑅 →  𝑅. Firstly, 

we assume that equation (1) fulfills the requirements outlined in the Existence and Uniqueness 

Theorem for initial-value problems [24]. To numerically solve equation (1), the interval of 

integration [𝑡0, 𝑇] is discretized by dividing it into smaller intervals. Each interval is represented 
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by 𝑡𝑛  =  𝑡0  +  𝑛ℎ, where n is an integer starting from 0 and h represents the difference between 

𝑡n+1 and 𝑡n. The step-lengths, 𝑛ℎ, can be chosen as either a constant or a variable within the 

desired interval, depending on how the integrator is implemented. 𝑣𝑛 represents the approximate 

numerical value of the theoretical solution at 𝑡𝑛, which is represented as 𝑣(𝑡𝑛). In addition to 

the Runge-Kutta and linear multistep methods, there are additional well-recognized categories 

of methods for numerical integration, such as block methods, hybrid methods, exponentially 

fitted methods, and trigonometrically fitted methods. To obtain a comprehensive analysis of 

various categories of techniques, individuals can refer to the publications authored by [10] or by 

[16] (as well as the cited sources within). One might resort to specific sources that provide 

solutions for various sorts of differential equations, such as the ones mentioned in [1-9,11-15,17-

24]. 

The numerical method employed in this research is a hybrid approach that combines both block 

and hybrid characteristics. Dahlquist's first barrier imposes limitations on the number of steps 

and the order of stable linear multi-step techniques [22]. Based on this criterion, a linear multi-

step technique that is stable at zero would have an order of 𝑝, where  p ≤ 𝑘 +  1 if 𝑘 is an odd 

number, and 𝑝 ≤ k +  2 if 𝑘 is an even number. To overcome this obstacle, numerous writers 

have suggested hybrid approaches that use information from solution locations that are not in 

the current step. By utilizing data from off-step sites, it is possible to circumvent Dahlquist's 

initial barrier. These techniques are alternatively referred to as modified linear multi-step 

algorithms [1]. In contrast, block approaches generate solution information at multiple sites 

concurrently.  

This study presents novel approach called the Second Derivative Method with Optimized Hybrid 

Points (SDMOHP).  

2. Development of the method 

Suppose that the exact solution 𝑣(𝑡) of equation (1) is approximated by the polynomial p(𝑡) 
given by  

 
𝑝(𝑡) =∑𝑤𝑗𝑡

𝑗

𝑚

𝑗=0

. 
(2) 

where  𝑤𝑗 ∈  𝑅 are real undetermined coefficients. 𝑚 =  (𝐶 +  𝐼)  −  1, I is the number of 

interpolation and C is the number of collocation points. Differentiating (2) yield the first 

derivative as  

 
 𝑝′(𝑡) =∑𝑗𝑤𝑗𝑡

𝑗−1

𝑚

𝑗=0

. 
(3) 

Differentiating (3) gives the second derivative as 

𝑝′′(𝑡) =∑𝑗(𝑗 − 1)𝑤𝑗𝑡
𝑗−2

𝑚

𝑗=0

. 
(4) 

Interpolating equation (2) at 𝑡𝑛+𝑗 , 𝑗 = 0 and collocating equation (3) at 𝑡𝑛+𝑗, 𝑗 =

0, 𝑢1, 𝑢2, 𝑢3, 1, where 𝑢1, 𝑢2, 𝑢3 are the hybrid points such that 0 < 𝑢1 < 𝑢2 < 𝑢3 <
1.This yields a system of linear equations given as 
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(

 
 
 
 

1 𝑡𝑛 𝑡𝑛
2

0 1 2𝑡𝑛
0 1 2𝑡𝑛+𝑢1

    

𝑡𝑛
3 𝑡𝑛

4 𝑡𝑛
5

3𝑡𝑛
2 4𝑡𝑛

3 5𝑡𝑛
4

3𝑡𝑛+𝑢1
2 4𝑡𝑛+𝑢1

3 5𝑡𝑛+𝑢1
4

0 1 2𝑡𝑛+𝑢2
0 1 2𝑡𝑛+𝑢3
0 1 2𝑡𝑛+1

    

3𝑡𝑛+𝑢2
2 4𝑡𝑛+𝑢2

3 5𝑡𝑛+𝑢2
4

3𝑡𝑛+𝑢3
2 4𝑡𝑛+𝑢3

3 5𝑡𝑛+𝑢3
4

3𝑡𝑛+1
2 4𝑡𝑛+1

3 5𝑡𝑛+1
4 )

 
 
 
 

(

  
 

𝑤0
𝑤1
𝑤2
𝑤3
𝑤4
𝑤5)

  
 
=

(

 
 
 
 

𝑣𝑛
𝑓𝑛
𝑓𝑛+𝑢1
𝑓𝑛+𝑢2
𝑓𝑛+𝑢3
𝑓𝑛+1 )

 
 
 
 

. 
(5) 

Solving equation (5), the coefficients 𝑤𝑗 ’s, 𝑗 =  0, 1, . . . , 5 are obtained and 

substituted into equation (3) t o  get the implicit scheme of the form: 

𝑣(𝑡)  =  𝛼0(𝑡)𝑣𝑛  +  ℎ(𝛽0(𝑡)𝑓𝑛  + 𝛽𝑢1 (𝑡)𝑓𝑛+𝑢1  + 𝛽𝑢2 (𝑡)𝑓𝑛+𝑢2  
+ 𝛽𝑢3 (𝑡)𝑓𝑛+𝑢3  + 𝛽1 (𝑡)𝑓𝑛+1 . 

(6) 

where, 𝛼0(𝑡),  and  𝛽𝑗(𝑡), 𝑗 =  0, 𝑢1, 𝑢2, 𝑢3, 1 are continuous coefficients. 

Evaluating equation (5) at the points 𝑡 =  𝑡𝑛+𝑢1 , 𝑡𝑛+𝑢2 , 𝑡𝑛+𝑢3 , 𝑡𝑛+1, yield the following 

𝑣𝑛+𝑢1

= 𝑣𝑛 +
ℎ𝑢1(−3𝑢1

3 + 30𝑢2𝑢3 +5𝑢1
2)(1 + 𝑢2 + 𝑢3) − 10𝑢1(𝑢2 + 𝑢3 + 𝑢2𝑢3))𝑓𝑛  

60𝑢2𝑢3

+
ℎ𝑢1

3(3𝑢1
2 + 10𝑢2𝑢3 −5𝑢1(𝑢2 +𝑢3))𝑓𝑛+1

60(−1 + 𝑢1)(−1 + 𝑢2)(−1 + 𝑢3)

+
ℎ𝑢1(12𝑢1

3 − 30𝑢2𝑢3 +5𝑢1
2(1 + 𝑢2 + 𝑢3) + 20𝑢1(𝑢2 + 𝑢3 + 𝑢2𝑢3))𝑓𝑛+𝑢1  )

60(−1 + 𝑢1)(𝑢1 − 𝑢2)(𝑢1 − 𝑢3)

+
ℎ𝑢1

3(3𝑢1
2 + 10𝑢3 −5𝑢1(1 + 𝑢3))𝑓𝑛+𝑢2

60(𝑢1 − 𝑢2)(−1 + 𝑢2)𝑢2(𝑢2 + 𝑢3)
+
ℎ𝑢1

3(3𝑢1
2 + 10𝑢2 − 5𝑢1(1 + 𝑢2))𝑓𝑛+𝑢3

60(𝑢1 − 𝑢3)(−1 + 𝑢3)𝑢3(−𝑢2 + 𝑢3)
, 

(7) 

 

𝑣𝑛+𝑢2

= 𝑣𝑛 +
ℎ𝑢2(5𝑢1(𝑢2

2 + 6𝑢3 − 2𝑢2(1 + 𝑢3)) + 𝑢2(−3𝑢2
2 − 10𝑢3 + 5𝑢2(1 + 𝑢3))𝑓𝑛

60𝑢1𝑢3

+
ℎ𝑢2

3(𝑢2(3𝑢2 − 5𝑢3) − 5𝑢1(𝑢2 − 2𝑢3))𝑓𝑛+1
60(−1 + 𝑢1)(−1 + 𝑢2)(−1 + 𝑢3)

−
ℎ𝑢2

3(3𝑢2
2 + 10𝑢3 − 5𝑢2(1 + 𝑢3))𝑓𝑛+𝑢1

60(−1 + 𝑢1)𝑢1(𝑢1 − 𝑢2)(𝑢1 − 𝑢3)

+
ℎ𝑢2(5𝑢1(3𝑢2

2 + 6𝑢3 − 4𝑢2(1 + 𝑢3)) + 𝑠(−12𝑢2
2 − 20𝑢3 + 15𝑢2(1 + 𝑢3))𝑓𝑛+𝑢2

60(𝑢1 − 𝑢1)(−1 + 𝑢2)(𝑢2 − 𝑢3)

−
ℎ𝑢2

3(5𝑢1(−2 + 𝑢2) + (5 − 3𝑢2)𝑢2)𝑓𝑛+𝑢3
60(𝑢1 − 𝑢3)(−1 + 𝑢3)(−𝑢2 + 𝑢3)

, 

(8) 
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𝑣𝑛+𝑢3
= 𝑣𝑛

+
ℎ𝑢3(𝑢3(5𝑢2(−2 + 𝑢3) + (5 − 3𝑢3)𝑢3) + 5𝑢1(−2𝑢2(−3 + 𝑢3) + (−2 + 𝑢3)𝑢3))𝑓𝑛

60𝑢1𝑢2

+
ℎ𝑢3

3(10𝑢1𝑢2 − 5𝑢1𝑢3 − 5𝑢2𝑢3 + 3𝑢3
2)𝑓𝑛+1

60(−1 + 𝑢1)(−1 + 𝑢2)(−1 + 𝑢3)
+
ℎ𝑢3

3(5𝑢2(−2 + 𝑢3) + (5 − 3𝑢3)𝑢3)𝑓𝑛+𝑢1
60(−1 + 𝑢1)𝑢1(𝑢1 − 𝑢2)(𝑢1 − 𝑢3)

−
ℎ𝑢3

3(5𝑢1(−2 + 𝑢3) + (5 − 3𝑢3)𝑢3)𝑓𝑛+𝑢2
60(𝑢1 − 𝑢2)(−1 + 𝑢2)(𝑢2 − 𝑢3)

+
ℎ𝑢3(𝑢3(3(5 − 4𝑢3)𝑢3 + 5𝑢2(−4 + 3𝑢3)) + 5𝑢1(𝑢2(6 − 4𝑢3) + 𝑢3(−4 + 3𝑢3)))𝑓𝑛+𝑢3

60(𝑢1 − 𝑢3)(−1 + 𝑢3)(−𝑢2 + 𝑢3)
, 

(9) 

 

𝑣𝑛+1

= 𝑣𝑛 +
ℎ(−3 + 𝑢2(5 − 10𝑢3) + 5𝑢2 + 5𝑢1(1 − 2𝑢3 + 𝑢2(−2 + 6𝑢3)))𝑓𝑛

60𝑢1𝑢2𝑢3

+
ℎ(= 12 + 15𝑢2 + 15𝑢3 − 20𝑢2𝑢3+5𝑢1(3 − 4𝑢3 + 𝑢2(−4 + 6𝑢3)))𝑓𝑛+1

60(−1 + 𝑢1)(−1 + 𝑢2)(−1 + 𝑢3)

+
ℎ(3 − 5𝑢3 + 5𝑢2(−1 + 2𝑢2))𝑓𝑛+𝑢1
60(−1 + 𝑢1)𝑢1(𝑢1 − 𝑢2)(𝑢1 − 𝑢3)

+
ℎ(3 − 5𝑢3 + 5𝑢1(−1 + 2𝑢2))𝑓𝑛+𝑢2
60(𝑢1 − 𝑢2)(−1 + 𝑢2)(𝑢2 − 𝑢3)

+
ℎ(3 − 5𝑢2 + 5𝑢1(−1 + 2𝑢2))𝑓𝑛+𝑢3
60(𝑢1 − 𝑢3)(−1 + 𝑢3)(−𝑢2 + 𝑢3)

, 

(10) 

where, 𝑓𝑛+𝑗 =  𝑓 (𝑡𝑛+𝑗 , 𝑣𝑛+𝑗  ), for 𝑗 = 𝑢1, 𝑢2, 𝑢3, 1, and 𝑣𝑛+𝑗  ≈  𝑣(𝑡𝑛  +

 𝑗ℎ) are approximations of the exact solution. Expanding 𝑣(𝑡𝑛+1) in the Taylor 

series around 𝑡𝑛 gives the LTE. 

ℒ(𝑣(𝑡𝑛+1); ℎ) =
1

7200
(−2 + 3𝑢1 + 3𝑢2 − 5𝑢1𝑢2 + 3𝑢3 − 5𝑢1𝑢3 − 5𝑢2𝑢3

+ 10𝑢1𝑢2𝑢3)𝑦
6[𝑡𝑛]ℎ

6

+
1

302400
(−24 + 21𝑢1 + 21𝑢1

2 + 21𝑢2 − 14𝑢1𝑢2 − 35𝑢1
2𝑢2 + 21𝑢1

2

− 35𝑢1𝑢1
2 + 21𝑢3)𝑦

7[𝑡𝑛]ℎ
7

+
1

302400
(−14𝑢1𝑢3 − 35𝑢1

2𝑢3 − 14𝑢2𝑢3 + 70𝑢1
2𝑢2𝑢3 − 35𝑢2

2𝑢3

+ 70𝑢1𝑢2
2𝑢3)𝑦

7[𝑡𝑛]ℎ
7

+
1

302400
(21𝑢3

2 − 35𝑢1𝑢3
2 − 35𝑢2𝑢3

2 + 70𝑢1𝑢2𝑢3
2)𝑦7[𝑡𝑛]ℎ

7 + 𝑂(ℎ)8. 

(11) 

Equating the leading term of the LTE in equation (11) to zero yields: 

1

7200
(−2 + 3𝑢1 + 3𝑢2 − 5𝑢1𝑢2 + 3𝑢3 − 5𝑢1𝑢3 − 5𝑢2𝑢3 + 10𝑢1𝑢2𝑢3) = 0. 

(12) 

There are an infinite number of solutions for 𝑢1, 𝑢2, 𝑢3 since there are more 

unknowns than equations. 𝑢2 is optimized when two of them (let’s say, 𝑢1 and 

𝑢3) are thought of as free parameters. Adopting this approach in solving 

equation (12), one of the parameters is obtained in terms of the other two: 
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𝑢2 =
2 − 3𝑢1 − 3𝑢3 + 5𝑢1𝑢3
3 − 5𝑢1 − 5𝑢3 + 10𝑢1𝑢3

, 
(13) 

while the other two parameters are given as 

𝑢1 =
1

10
(5 − √5); 𝑢3 =

1

10
(5 + √5).  

(14) 

Substituting equation (14) into equation (13), we get 𝑢2 =
1

2
. 

2.1 Second derivative method with optimized hybrid points (SDMOHP) 

Interpolating equation (2) at 𝑡𝑛+𝑗 , 𝑗 =  0 and collocating equations (3) and (4) at 

𝑡𝑛+𝑗 , 𝑗 =  0, 𝑢1, 𝑢2, 𝑢3, 1, and 𝑡𝑛+𝑗, 𝑗 =  0, 1 respectively yields a system of linear 

equations given as 

(

 
 
 
 
 
 
 

1 𝑡𝑛 𝑡𝑛
2

0 1 2𝑡𝑛
0 1 2𝑡𝑛+𝑢1

    

𝑡𝑛
3 𝑡𝑛

4 𝑡𝑛
5

3𝑡𝑛
2 4𝑡𝑛

3 5𝑡𝑛
4

3𝑡𝑛+𝑢1
2 4𝑡𝑛+𝑢1

3 5𝑡𝑛+𝑢1
4

𝑡𝑛
6 𝑡𝑛

7

6𝑡𝑛
5 7𝑡𝑛

6

  6𝑡𝑛+𝑢1
5 7𝑡𝑛+𝑢1

6

0 1 2𝑡𝑛+𝑢2
0 1 2𝑡𝑛+𝑢3
0 1 2𝑡𝑛+1

    

3𝑡𝑛+𝑢2
2 4𝑡𝑛+𝑢2

3 5𝑡𝑛+𝑢2
4

3𝑡𝑛+𝑢3
2 4𝑡𝑛+𝑢3

3 5𝑡𝑛+𝑢3
4

3𝑡𝑛+1
2 4𝑡𝑛+1

3 5𝑡𝑛+1
4

  6𝑡𝑛+𝑢2
5 7𝑡𝑛+𝑢2

6

  6𝑡𝑛+𝑢3
5 7𝑡𝑛+𝑢3

6

  6𝑡𝑛+1
5 7𝑡𝑛+1

6

0 0 2
0 0 2

 
       6𝑡𝑛 12𝑡𝑛

2    20𝑡𝑛
3

       6𝑡𝑛+1 12𝑡𝑛+1
2    20𝑡𝑛+1

3  
30𝑡𝑛

4 42𝑡𝑛+1
5

30𝑡𝑛+1
4 42𝑡𝑛+1

5 )

 
 
 
 
 
 
 

(

 
 
 
 
 

𝑤0
𝑤1
𝑤2
𝑤3
𝑤4
𝑤5
𝑤6
𝑤7)

 
 
 
 
 

=

(

 
 
 
 
 
 

𝑣𝑛
𝑓𝑛
𝑓𝑛+𝑢1
𝑓𝑛+𝑢2
𝑓𝑛+𝑢3
𝑓𝑛+1
𝑔𝑛
𝑔𝑛+1)

 
 
 
 
 
 

. (15) 

Solving the system (16) by the Gaussian Elimination method, the coefficients 𝑤𝑗 ’s, 𝑗 =

 0, 1, . . . , 7 are obtained and substituted into equation (2) gives an implicit continuous 

scheme of the form: 

𝑝(𝑡)  =  𝛼0(𝑡)𝑦𝑛  +  ℎ(𝛽0(𝑡)𝑓𝑛  + 𝛽𝑢1 (𝑡)𝑓𝑛+𝑢1  + 𝛽𝑢2 (𝑡)𝑓𝑛+𝑢2  + 𝛽𝑢3 (𝑡)𝑓𝑛+𝑢3  +

𝛽1 (𝑡)𝑓𝑛+1   + ℎ
2(𝛾0(𝑡)𝑔𝑛 + 𝛾1(𝑡)𝑔𝑛+1). 

(16) 

Evaluating equation (15) at the points 𝑡 =  𝑡𝑛+𝑢1 , 𝑡𝑛+𝑢2 , 𝑡𝑛+𝑢3 , 𝑡𝑛+1, yield the 

following 

𝑣𝑛+𝑢1 = 𝑣𝑛 +
1

105000
(ℎ ((14325 + 105√5)𝑓𝑛 + (15625 + 135√5)𝑓𝑛+𝑢1 + (8000

− 6464√5)𝑓𝑛+𝑢2 + (15625 − 5625√5)𝑓𝑛+𝑢3 + (−1075 + 107√5)𝑓𝑛+1)

+ ℎ2 ((600 + 8√5)𝑔𝑛 + (100 − 8√5)𝑔𝑛+1)), 

𝑣𝑛+𝑢2 = 𝑣𝑛 +
1

13440
(ℎ(1723𝑓𝑛 + (2000 + 875√5)𝑓𝑛+𝑢1 + 1024𝑓𝑛+𝑢1

+ (2000 − 875√5)𝑓𝑛+𝑢3 − 27𝑓𝑛+1)+ℎ
2(67𝑔𝑛 + 3𝑔𝑛+1)), 

(17) 
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𝑣𝑛+𝑢3 = 𝑣𝑛 +
1

105000
(ℎ ((14325 − 105√5)𝑓𝑛 + (15625 + 135√5)𝑓𝑛+𝑢1 + (8000

+ 6464√5)𝑓𝑛+𝑢2 + (15625 − 5625√5)𝑓𝑛+𝑢3 − (1075 + 107√5)𝑓𝑛+1)

+ ℎ2 ((600 − 8√5)𝑔𝑛 + (100 + 8√5)𝑔𝑛+1)), 

𝑣𝑛+1 = 𝑣𝑛 +
1

420
(ℎ(53𝑓𝑛 + 125𝑓𝑛+𝑢1 + 64)𝑓𝑛+𝑢2 + 125𝑓𝑛+𝑢3 + 53𝑓𝑛+1)+ℎ

2(2𝑔𝑛 −

2𝑔𝑛+1)). 

3.      Basic properties of the SDMOHP 

This section examines the SDMOHP (17) for accuracy, consistency, zero-stability, 

convergence, linear stability,  and A-stability. 

3.1 Order of accuracy and consistency 

The matrix difference form for the SDMOHP (17) is given as 

𝑊1𝑉𝑛 = 𝑊0𝑉𝑛−1 + ℎ(𝑍0𝐹𝑛−1 + 𝑍1𝐹𝑛) + ℎ
2(𝑉0𝐺𝑛−1 + 𝑉1𝐺𝑛), 

(18) 

Where 𝑊0,𝑊1, 𝑍0, 𝑍1, 𝑉0 and 𝑉1 are  4 × 4 matrices given by 

𝑊0 = (

0 0 0
0 0 0
0
0

0
0

0
0

   

1
1
1
1

); 𝑊1 = (

1 0 0
0 1 0
0
0

0
0

1
0

   

0
0
0
1

); 𝑍0 =

(

 
 
 
 0 0 0
0 0 0
0
0

0
0

0
0

   

14326+107√5

105000
1723

13440

14326−107√5

105000
53

420 )

 
 
 
 

; 

 

 

 

(19) 

𝑍1 =

(

 
 
 
 
 
 

15625 + 1375√5

105000

8000 − 6464√5

105000

15625 − 5625√5

105000

2000 + 875√5

13440

1024

13440

2000 − 875√5

13440

15625 + 5625√5

105000
125

420

8000 + 6464√5

105000
64

420

15625 − 1375√5

105000
125

420

   

−1075 + 107√5

105000
−27

13440

−(1075 + 107√5)

105000
53

420 )

 
 
 
 
 
 

. 

 

 

(20) 
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𝑉0 =

(

 
 
 
 
 
 
0 0 0
0 0 0
0
0

0
0

0
0

   

600 + 8√5

105000
67

13440

600 − 8√5

105000
1

210 )

 
 
 
 
 
 

;𝑉1 =

(

 
 
 
 
 
 
0 0 0
0 0 0
0
0

0
0

0
0

   

100 − 8√5

105000
3

13440

100 + 8√5

105000
−1

210 )

 
 
 
 
 
 

; 
(21) 

𝑉𝑛 = (𝑣𝑛+𝑢1 , 𝑣𝑛+𝑢2 , 𝑣𝑛+𝑢3 , 𝑣𝑛+1)
𝑇 ,  

𝑉𝑛−1 = (𝑣𝑛−1+𝑢1 , 𝑣𝑛−1+𝑢2 , 𝑣𝑛−1+𝑢3 , 𝑣𝑛)
𝑇 , 

𝐹𝑛 = (𝑓𝑛+𝑢1 , 𝑓𝑛+𝑢2 , 𝑓𝑛+𝑢3 , 𝑓𝑛+1)
𝑇 , 

𝐹𝑛−1 = (𝑓𝑛−1+𝑢1 , 𝑓𝑛−1+𝑢2 , 𝑓𝑛−1+𝑢3 , 𝑓𝑛)
𝑇 (22) 

𝐺𝑛 = (𝑔𝑛+𝑢1 , 𝑔𝑛+𝑢2 , 𝑔𝑛+𝑢3 , 𝑔𝑛+1)
𝑇 ,  

𝐺𝑛−1 = (𝑔𝑛−1+𝑢1 , 𝑔𝑛−1+𝑢2 , 𝑔𝑛−1+𝑢3 , 𝑔𝑛)
𝑇 . 

The SDMOHP is of order 𝑝 = (7,7,7,8)𝑇 while the error constant is 

𝑐𝑝+1 =
−1

75600000
,

−1

154828800
,

−1

75600000
,

1

1016064000
. 

(23) 

Hence, the SDMOHP has at least seventh-order accuracy.  

3.2 Zero-stability and convergence 

Zero-stability involves the characteristics exhibited by a procedure when the value of h 

approaches zero. In the context of a homogeneous equation 𝑣′ = 0,  the discretized 

form is  

𝑊1𝑉𝑛 −𝑊0𝑉𝑛−1 = 0, 
(24) 

where 𝑊0 and 𝑊1 are given in equations (27) and (34). The first characteristic 

polynomial 𝜌(𝜎)  =  𝑑𝑒𝑡 (𝜎𝑊1 − 𝑊0)  =  𝜎
3(𝜎 −  1)  =  0. This implies that 𝜎1 =

𝜎2 = 𝜎3 = 0,𝜎4 = 1.  

“A continuous implicit multistep method is zero-stable if the modulus of no root of the 

first characteristic polynomial 𝜌(𝜎) exceeds one, and if every root with a modulus of 

one has a multiplicity that does not exceed the order of the differential equation” [7]. 

Therefore, the approach being presented exhibits zero stability.  

Since the SDMOHP is both consistent and zero-stabile, it is convergent according to [10]. 

3.3 Linear stability 

The concept of linear stability focuses on the performance of a method in real-world 

scenarios, where it is crucial to ascertain if the approach will produce desirable outcomes for 
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a given positive value of h. To validate this concept, commonly known as linear stability, 

we employ the methodology on a linearized test problem. 

𝑣(𝑡)  =  𝜇𝑣(𝑡), 𝑅𝑒(𝜇)  <  0. 
(25) 

Applying the SDMOHP to (25), yields the recurrence relation 

𝑉𝑛 =  𝐻(Λ)𝑉𝑛−1, Λ =  𝜇ℎ, 
(26) 

where,   

𝐻(Λ) = (𝑊1 − 𝜇𝑍1)
−1(𝑊0 −  𝜇𝑍0), 

(27) 

is the stability matrix having eigenvalues (𝜁1, 𝜁2, 𝜁3, 𝜁4) = (0,0,0, 𝜁4) with 

𝜁4 =
Λ5 + 27Λ4 + 360Λ3 + 2820Λ2 + 12600Λ + 25200

−Λ5 + 27Λ4 − 360Λ3 + 2820Λ2 − 12600Λ + 25200
. 

(28) 

The stability region of SDMOHP is plotted in the complex plane as shown in Figure 1. The 

SDMOHP is A-stable since the whole left half-plane is included in the stability region. 

 

Figure 1: Region of absolute stability for SDMOHP 
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Figure 2: Solution plot for problem 4.1 

 
Figure 3: Solution plot for problem 4.2 

 

 
Figure 4: Solution plot for problem 4.3 
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Figure 5: Solution plot for problem 4.4 

4.   Numerical experiments and results 

The SDMOHP is applied to solve some first-order IVPs and comparison is made with 

existing methods in the literature. The selected methods are SDMOHP (17), the Hybrid 

Block Second Derivative Backward Differentiation Formula (HBSDBDF) in [2],  and the 

reformulated two-step block optimized hybrid method (RBHMO) in [14]. 

The following are used to measure the performance of each of the aforementioned methods.  

The maximum global absolute error (MErr), global absolute error (AbErr), absolute error 

at and the final grid point (FErr). The problems used to test the accuracy of the schemes 

are the nearly sinusoidal system in [2], the linear stiff IVP considered in [14], the system 

of linear equations in [21], and the mildly stiff problem in [22]. 

Problem 4.1 

Given the linear stiff IVP 

 𝑣′(𝑡) = −1000𝑣 + 𝑒−2𝑡,   𝑣(0) = 0. 
(29) 

The exact solution is 𝑣(𝑡) =
1

908
(𝑒−2𝑡 − 𝑒−1000). This equation has been subject to several 

numerical investigations in the literature such as [10]. The interval of solution is [0,1] with 𝑛 =
3750, 7500, 15000. The AbErr is computed using the methods SDMOHP, HBSDBDF, and 

RBHMO, and the results are presented in Table 1. The solution profile is presented in Figure 2. 

The results in table indicate that the SDMOHP outperforms existing methods with respect to 

accuracy.  

Problem 4.2 

Given the system of linear IVP: 

𝑣1
′(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡),   𝑣1(0) = 0, 

(30) 
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𝑣2
′ (𝑡) = −𝑣1(𝑡) + 𝑣2(𝑡),   𝑣2(0) = 0. 

The exact solution    𝑣1(𝑡) = 𝑒
𝑡 sin 𝑡, 𝑣2(𝑡) = 𝑒

𝑡 cos 𝑡. This problem was numerically investigated 

by [19]. The problem is solved for step sizes 𝑛 = 20, 40, 80 with the MErr, FErr, and AbErr 

computed using the methods SDMOHP, HBSDBDF and RBHMO and results presented in 

Table 2. The solution profile is represented in Figure 3. The results in Table 2 reveal that the 

SDMOHP outperform existing methods concerning accuracy. 

Problem 4.3 

Given the mildly stiff problem with stiffness ratio 1:1000 investigated by [20] among others,  

𝑣1
′(𝑡) = 998𝑣1(𝑡) + 1998𝑣2(𝑡),   𝑣1(0) = 1, (31) 

𝑣2
′ (𝑡) = −999𝑣1(𝑡) − 1999𝑣2(𝑡),   𝑣2(0) = 0, 

with exact solution    

𝑣1(𝑡) = 4𝑒
−𝑡 − 3𝑒−1000𝑡, 

(32) 

𝑣2(𝑡) = −2𝑒
−𝑡 + 3𝑒−1000𝑡. 

The interval of solution is [0,1] with 𝑛 = 30, 50, 70. The AbErr is computed using the 

methods SDMOHP, HBSDBDF and RBHMO, and results are presented in Tables 3. As 

revealed by Table 3, the SDMOHP is more accurate than the existing methods. 

Problem 4.4 

Given the nearly sinusoidal system investigated by [2] 

𝑣1
′(𝑡) = −2𝑣1(𝑡) + 𝑣2(𝑡) + 2 sin 𝑡 ,   𝑣1(0) = 2, (33) 

𝑣2
′ (𝑡) = 998𝑣1(𝑡) − 999𝑣2(𝑡) + 999 cos 𝑡 − 999 sin 𝑡 ,   𝑣2(0) = 3, 

with exact solution 

  𝑣1(𝑡) = 2𝑒
−𝑡 + sin 𝑡, 

(34) 

𝑣2(𝑡) = 2𝑒
−𝑡 + cos 𝑡. 

The problem is solved in the interval [0,1] taking 𝑛 = 25, 50, 100, 200. The MErr, and Ferr, 

are computed using the methods SDMOHP, HBSDBDF and RBHMO, and results are 

presented in Tables 4. As revealed by Table 4, the SDMOHP outperforms existing methods with 

respect to accuracy. 
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Table 1: The AbErr for Problem 4.1 using different methods and step sizes (n) 

n Method AbErr 

100 SDMOHP 0.000E+00 
  HBSDBDF 2.711E-20 
  RBHMO 3.795E-19 
200 SDMOHP 0.000E+00 

  HBSDBDF 2.711E-20 
  RBHMO 2.711E-20 
400 

  

  

SDMOHP 1.044E-14 

HBSDBDF 0.000E+00 
RBHMO 0.000E+00 

 

Table 2: The MErr, and FErr for Problem 4.2 using different methods and step sizes (n) 

n Method MErr-v1    MErr- v2 FErr- v1 FErr- v2 

10 SDMOHP 7.10543E-15 1.55431E-15 7.10543E-15 8.88178E-16 
 HBSDBDF 4.71915E-09 1.94067E-09 4.71915E-09 1.92155E-09 
 RBHMO 1.66107E-08 6.83124E-09 1.66107E-08 6.09217E-09 

20 SDMOHP 1.77636E-15 1.77636E-15   1.77636E-15 1.55431E-15 
 HBSDBDF 3.22329E-11 1.67675E-11 3.22329E-11 1.67675E-11 
 RBHMO 2.59210E-10 1.07343E-10   2.59210E-10 9.60974E-11 

40 SDMOHP 6.21725E-15 4.88498E-15 6.21725E-15 4.66294E-15 
 HBSDBDF 1.51434E-13 1.15685E-13 1.51434E-13 1.15685E-13 
 RBHMO 4.05542E-12 1.67311E-12 4.05542E-12 1.49569E-12 

80 SDMOHP 6.21725E-15 4.88498E-15 6.21725E-15 4.66294E-15 

 HBSDBDF 3.41949E-14 6.17284E-14 9.76996E-15 5.30687E-14 

 RBHMO 5.15143E-14 2.66454E-14 3.81917E-14 2.66454E-14 

 

Table 3: The AbErr for Problem 4.3 using different methods and step sizes (n) 

n Method AbErr- v1 AbErr- v2 

    30 SDMOHP 6.661E-16 2.220E-16 
 HBSDBDF 1.146E-12 5.729E-13 
 RBHMO  2.846E-07  2.846E-07 

50 SDMOHP 5.329E-15 2.554E-15 
 HBSDBDF 3.439E-13 1.720E-13 
 RBHMO 1.554E-14 7.827E-15 

70 SDMOHP 1.044E-14 5.107E-15 
 HBSDBDF 3.124E-13 1.561E-13 
 RBHMO 1.721E-14 8.604E-15 
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Table 4: The MErr for Problem 4.4 using different methods and step sizes (n) 

n Method MErr- v1 MErr- v2 

    25 SDMOHP 7.17293E-12 7.16449E-12 
 HBSDBDF 1.38968E-06 3.84999E-05 
 RBHMO   3.81823E-07   4.19753E-07 

50 SDMOHP 2.79776E-14 2.78944E-14 
 HBSDBDF 1.32072E-08 1.32079E-08 
 RBHMO 5.97340E-09 8.37251E-09 

100 SDMOHP 2.99760E-15 2.99760E-15 
 HBSDBDF 1.13631E-10 1.13635E-10 
 RBHMO 9.32286E-11 1.89637E-10 

5. Conclusion 

We have presented the seventh-order second derivative method with optimized hybrid 

points for solving first-order initial value problems of ODEs.  The results in Tables 1, 2, 

3, and 4 reveal that the methods SDMOHP is more accurate than existing methods. In 

comparison with another popular method from available literature, our methods produced 

minor errors. The SDMOHP was implemented in block modes with the merit that no 

starting values were required. The methods have good accuracy properties and are indeed 

of the higher order of accuracy at the final grid point where the LTE was optimized, a major 

advantage of the method. Also, the methods do not require the creation of separate 

predictors. Hence, the technique is recommended for general use. 
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