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Abstract- 

Disruptions in the process industry often cause longer 

downtime and less effective operations. In the case of 

automated operations, when mistakes have the potential to 

significantly affect product quality and cost, this is especially 

important to keep in mind. Human immune system research has 

been used as a starting point for solutions to this problem. An 

AIS can be created to identify and segregate problems in the 

manufacturing process in the same way that our B and T cells 

identify and eliminate infectious microbes in the human body. 

Protégé was used to create an ontology focused on the immune 

system. The AIS model is preprogrammed to identify 

interruptions and launch an immediate countermeasure. The 

model can dynamically adapt its response to the unique 

interruption it meets by allocating weights to different criteria. 

Fifteen input/output factors affecting process downtime, system 

efficiency, and consumer-centric value were evaluated to put 

this approach to the test. They tested how well the AIS concept 

worked in a lab setting. As a result, this method offers a 

potentially fruitful way to enhance the effectiveness and 

dependability of automated operations in the process industry. 

 

Index Terms- Human immune system, Alarm trip point, 

disruption, Smart manufacturing system. 

I. INTRODUCTION 

Due to the increasing complexity of modern production 

systems, they are more vulnerable than ever before to a wide 

range of interruptions. Process downtime, material loss, 

efficiency, and production are all negatively impacted by these 

errors and interruptions. The failure of a drive or a sensor to 

calibrate properly, the destruction of a tool, the loss of a gadget, 

etc., all fall into this category. Using an intelligent system is 

necessary in order to counteract the aforementioned 

disturbances that have a direct impact on the cost of the final 

product [1]. Even worse, if not dealt with properly, these 

interruptions can set off a chain reaction that will cause the 

entire manufacturing facility to crash and burn [2]. 

The human immune system provides a valuable model for 

creating effective systems that can manage and mitigate 

disruptions. By studying how the immune system functions, 

researchers can develop frameworks that can anticipate and 

resolve unexpected disturbances [3]. Despite the abundance of 

literature on the conceptual framework of fault detection and 

the incorporation of immune-based mechanisms into automated 

processes, there is still much room for improvement, and 

generic principles and procedures need further refinement. 

Although these methods have been shown to reduce the impact 

of interruptions, their implementation in a real-world system 

has been limited. The current work is an attempt to apply the 

concept of the HIS inspired Framework for Disruption 

Handling in manufacturing process (HISFDH), which was 

inspired by the human immune system, to a practical 

manufacturing environment. With the presented paradigm, 

rapid disruption assessments and automatic reaction production 

are both possible. Assigning weights relative to the database's 

predefined states allows for a real-time assessment of 

interruption impacts. The work is divided into the following 

sections: (1) an introduction; (2) a survey of HIS; (3) research 

on FDI; (4) a proposed HISFDH model; (5) a case study 

employing the model; and (6) a discussion of the findings and 

some suggestions for the future. 

II. REVIEW OF HUMAN IMMUNE SYSTEM 

The immune system protects the body from harmful 

substances called pathogens that enter the body through the 

skin. These pathogens disrupt normal bodily processes and so 

cause sickness. The HIS is further subdivided into the innate 

immune system and the adaptive immune system; both of these 

systems accomplish the same goals. Pathogens are stopped at 

the innate immune system's "gates," which include the skin, 

mucous membranes, gastric juice, epithelial cells, and so on. 

When pathogens enter the body, a second type of innate 

immunity kicks into gear; these cells consume the invaders via 

phagocytosis and display a portion of the pathogen's protein on 

their surface as a tag, earning them the name Antigen antigen-

presenting cells (APC) [4]. Antigen-presenting cells allow the 

innate immune system to recognize a large variety of infections 

(APCs). To determine who or what is "Self" and who or what 

is "non-self," APCs use specific receptors for pathogens called 

Pathogens Receptor Cells (PRRs) on the surface of APCs [5].  

The adaptive (acquired) immune response refers to the body's 

delayed response to all foreign diseases (see Figure 1). T-Cells 

and B-cells are the two types of cells in this immune system 

(Lymphocytes). T-cells can function as either a helper cell, 

promoting the generation and activation of B-cells (cd4), or as 

a killer cell, killing target cells (cd8). There are billions of B-

cells, each containing a protein called B cells receptors (BCH) 

that interacts with a pathogen via an epitope. When a pathogen 

connects to a B cell, the cell goes through Receptor-mediated 

endocytosis to engulf and kill the intruder. The B cell then 
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adheres to its surface a specific protein strand (a tag). These 

cells are also known as antigen-presentation cells (APCs) 

because of their role in presenting the MHC (Major 

Histocompatibility Complex) protein (Antigen Presenting 

Cells). APCs produce interleukin, which serves to anchor T 

lymphocytes. In response to interleukin, B cells undergo rapid 

mitotic divisions to tackle a large number of similar infections. 

During this process, some B and T cells mature into B and T 

memory cells that can recognize the removed pathogen. It 

lingers for a while to ensure a quick immunological response 

that keeps the body safe [6]. 

 
Figure 1: Human Immune System 

 

The success of the human immune system has prompted the 

development of synthetic immune systems (AIS). Many 

scientists have attempted to replicate AIS's success by 

developing their own systems with similar capabilities, such as 

the ability to recognize antigens, to remember information, to 

rearrange itself, to frame immunological reactions, and to 

recognize patterns. Furthermore, immune-inspired systems 

possess characteristics such as reaction framing, generalization 

capability, and multilayer framing, which have been studied 

extensively [7]. The "Self and Non-Self" concept has been 

introduced in various fields, such as network security, milling 

procedures [8], fault detection and diagnosis [9], and network 

intrusion in computer algorithms [10]. In addressing 

production, planning, and scheduling issues in industrial 

settings, researchers have proposed various strategies, 

including immunological tactics [11]. In discussing anomaly 

detection and its applications in business [12]. 

 

III. LITERATURE REVIEW 

There are three main aspects to this literature review: foreign 

direct investment models, alarm management strategies, and 

artificial immune approaches. 

A.  Models for the Detection and Diagnosis of Defects in 

Manufacturing Facilities 

Fault detection and identification (FDI) is a typical strategy for 

dealing with disruptions. Two competing diagnostic models are 

proposed, with specifics for both continuous and logical fault-

handling approaches [13]. A fault tree analysis (a more 

advanced logical and continuous diagnosis model) was devised 

to generate mayhem in manufacturing [14]. It proposes a 

method for process industry disruption based on the usage of 

hamming distance-dependent technology [15]. A more recent 

work [16] presents a system that may instantly generate a 

knowledge-based solution using PLC setup and circuit design. 

A technique suggested in [17] generates automatic PLC 

program code using a discrete event approach model for 

problem identification. Another aspect is that it simulates 

control logic using non-deterministic output automata [18]. [19] 

presents approaches based on minimum manufacturing process 

patterns that also leverage DESs for fault localization. When it 

comes to modeling control processes, [20] implements research 

based on autonomous automata. The finite state machine (FSM) 

technique for disruption handling [21] represents a significant 

improvement in this field. In the process industry, an amazing 

function-based analysis was proposed to determine the source 

of the sensor and actuator disagreement [22]. The Fault and 

Behavioral Anomaly Detection Tool for PLC Controlled 

Manufacturing Plant (FBMTP) offered here can detect 

anomalies in the process sector. The primary goal of this 

research is to use a novel and timed response mechanism to add 

real state transition time into existing non-deterministic models 

for fault rectification. A study in [23] provided a useful 

forward-backward algorithm-based approach for predicting 

remaining usable life and assessing online degradation. They 

created a model that connects the rate of degradation to its 

timeline. [24] created a concept that comprises developing an 

architecture for processing sensor data and providing fault-free 

zones in which machines can operate. A study in [25] uses 

modeled nonlinear observers to detect and locate process 

problems before activating the system's dynamic control logic 

to mitigate their effects. A study published in [26] looked at the 

costs of machine deterioration and offered many preventative 

maintenance measures to offset the higher costs. They also 

investigated the relationship between machine failure, quality 

measures, and product defect rate. According to a study 

published in [27], assembly line balance and component 

feeding increased the impacts of mixed integer models on 

consumer-centric value, lowering hazards in manufacturing 

facilities. 

B.  Limitations 

In a nutshell, FDI approaches provide a unified nominal control 

process model as a means of dealing with specific disturbances 

across the production line. Most of these accomplish their aims 

by utilizing comparison approaches based on log data files of 

control indicators. It is nearly impossible to retain an accurate 

log of signal occurrence data in regulated systems with rapid 

data flow. However, to lengthen the scanning period, such 

devices require duplicate controllers. That makes it more 

challenging to achieve instantaneous responses in real-time. 

C. Alarm Management  

Whenever time a plant sounds an alarm, it needs prompt 

treatment. In the case of alarm, an ontology is defined that can 
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be of use when analyzing a plant. The ontology-based linkage 

of alarms presented by [28] makes use of managed data. To 

fully realize the system's potential, it should be expanded to 

include more sophisticated monitoring capabilities. A filtering-

based model for recommending stocks is shown in SIGARA 

[29]. However, it doesn't provide information on required tasks 

that need modeling in context. As stated in [30] a general 

ontology for representing context is offered alongside context-

aware rules. It aims to demonstrate a framework that can be 

applied in numerous contexts. 

D. Artificial Immune System 

Artificial immune systems draw inspiration from natural 

immune systems as both are responsible for defending their 

respective hosts from harmful microorganisms. The objective 

of scientific research is to create artificial immune systems that 

possess superior capabilities such as identifying unique features 

of antigens, memorizing patterns, arranging memory, 

converting capabilities, framing immune reactions, learning 

from examples, processing information simultaneously, 

utilizing a multilayer framework, and exhibiting generalization 

abilities. AIS has numerous applications such as anomaly 

detection, fault diagnosis, computer and industrial network 

security, robotics, control, and optimization, among others. 

According to a study by [26], AIS can be used for both constant 

and combinatorial purposes.  The immune system, as well as 

the concepts of negative selection and clonal selection, are 

crucial for the most common types of AIS. There was a 

presentation of a negative-selection artificial intelligence 

system by [31]. The use of immune system concepts and 

mechanisms in engineering has shown potential for various 

applications such as network intrusion detection, fault detection 

and diagnosis, and DNA computing. One of the methods used 

is clonal selection, where only cells possessing specific 

characteristics identified by antigen receptors will proliferate. 

The clonal selection algorithm has been applied to solve 

computational issues, scheduling, and resource allocation 

optimization. The artificial immune recognition system (AIRS) 

is another implementation of the clonal selection method. 

Researchers have also developed frameworks and 

methodological guidelines for handling disruptions in 

production systems using immune-based approaches. However, 

there is a lack of focus on modeling disruption tactics, and there 

is a need for more attention and study in this area. Ontologies 

have been developed for dealing with disruptions in production 

systems, but more research is necessary to fully realize the 

potential of immune-based approaches in manufacturing. The 

proposed method of developing an immune-based ontology for 

the factory floor and implementing an immune-based disruption 

handling strategy in a functioning system addresses gaps in the 

existing literature. It is essential to give disruption handling 

models the attention they deserve in the software and domain 

of production systems to reduce process downtime and 

optimize efficiency, associated with each manufacturing 

process. The cell agents then use this information to make 

decisions on how to respond to disruptions in real time. One of 

the key advantages of using immune-based models in 

disruption management is their ability to adapt and learn from 

new disruptions. As the immune system encounters new 

pathogens, it adapts and develops new antibodies to defend 

against them. Similarly, in the manufacturing setting, an 

immune-based system can learn from new disruptions and use 

this knowledge to improve its response to future disruptions. 

This adaptability is particularly important in the manufacturing 

setting, where disruptions can have significant financial and 

logistical consequences. In conclusion, the use of immune-

based models in disruption management has significant 

potential for improving efficiency and reducing downtime in 

manufacturing systems. By leveraging the principles of the 

immune system, these models can adapt and learn from new 

disruptions, leading to more effective and efficient responses. 

However, further research is needed to develop and refine these 

models for use in specific manufacturing settings.  

IV. RESEARCH METHODOLOGY 

For clarity, this paper suggests a two-step process. 

1. The creation of an immunological ontology 

2. Progress in immune-based disruption handling 

We divide the process into two groups right away: physical and 

digital inputs/tags. Then, based on the ability to detect digital or 

physical labels, ontologies are created, and various agents are 

built. The electrical inputs and outputs, such as drives, valves, 

actuators, and so on, are labeled. Although virtual tags have no 

physical existence, they can be quite useful in automating the 

method for the coder. Virtual tags represent internal alarms, 

fault bits, reaction bits, analog sensor ranges, and so forth. 

The second level of methodology is a mimic of the immune 

system's function in real-world organisms. Foreign pathogens 

can be detected by human neutrophils and macrophage cells. In 

response to a foreign pathogen, T cells generate interleukin1, 2, 

and 3 signals, which cause B cells to multiply exponentially, 

producing enough antibodies to load the threat (pathogen) and 

render it harmless. Cell agents might also be used to represent 

a manufacturing plant to ensure that it receives consistent 

information from the control architecture. Following immune 

system logic, both actual (i.e. Antigen) and fake (i.e. APC) data 

are compared to the baseline (i.e. Normal Process) (i.e. normal 

body cell). We are continually comparing and evaluating the 

acquired data with each scan. When an uncommon incidence is 

discovered, the appropriate B and T agents are notified. The 

correct response is achieved as a result of the antibodies 

generated. The database contains a collection of reactions that 

are defined by a certain occurrence. The introduction of this 

strategy boosts the immune system considerably (already in 

literature). We provide a Fault Tolerant agent that continuously 

evaluates the anomaly (with each scan). The fault-tolerant agent 

intelligently selects the production flow based on the weights 

assigned to the problem bits, assisting in the reduction of waste, 

downtime, and customer-centric value loss. 

A. Ontology 
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Users, experts, and programmers may all speak the same 

language thanks to ontology, which facilitates communication 

and collaboration across all aspects of a given domain. The 

study of ontology is concerned with naming characteristics and 

providing justifications for specific assessments of those 

characteristics. The ontology established in this study is 

immune system-based and was designed for use on factory 

floors, however its applicability is broad enough to include the 

entire production facility. The created ontology contains 

manufacturing process metrics directly related to the 

functioning of machines/work stations of the floor shop, but it 

does not provide any details about indirect parameters such as 

inventory control, worker absenteeism, raw material quality, 

etc. To that end, it seeks to address the control data necessary 

for proper workstation operation and finalization of the process. 

B. Cell Agents 

The bits and matrices that make up a cell agent's memory hold 

all the data necessary to run the factory. Real and fictitious 

components of the production system are represented. SCADA 

or MES data consists of both physical and digital components, 

making it an essential controller/monitoring tool. The 

manufacturing process serves as its habitat, and its behavior is 

to exchange data with APC and antigens (both real and virtual). 

The cell agent's job is to keep the other two agents informed of 

their current state so that they can detect and respond to any 

disruptions. 

C. APC and Antigen Agents 

An antigen agent will produce matrices tied to actual disruption, 

whereas an APC agent will supply matrices of all possible 

virtual disruptions. The database shared by APC and Antigen 

Agent contains the sets of prospective disruptions, regardless of 

whether they are actual or virtual. In addition, the database 

refreshes and stores any unplanned disruption that occurs in the 

production line. Cell agents are provided with status updates by 

both the APC as well as the antigen agent. The purpose of the 

antigen and APC agents, which are depicted in Figures 2 and 3, 

is to identify any information in genuine or fictional tags that is 

incorrectly matched or otherwise aberrant. 

 

Figure 2: Antigen Agent in Protégé 

 

Figure 3: APC Agent Instances in Protégé 

D. B and T Agents 

The APC (antigen-presenting cell) agent in an immune-based 

disruption handling system is responsible for maintaining a 

database of all possible virtual disruptions, as well as any actual 

disruptions that occur in the manufacturing line. The APC agent 

also provides matrices of these disruptions to the cell agents, 

which are responsible for monitoring the status of the 

manufacturing line. The antigen agent, on the other hand, is 

responsible for identifying actual disruptions in the 

manufacturing line and providing matrices of these disruptions 

to the cell agents. Together, the APC and antigen agents help to 

identify any mismatched or abnormal information in both real 

and virtual tags, allowing for a more effective response to 

disruptions in the manufacturing process. 

 

Figure 4: T Agent Instances in Protégé 

 

Figure 5: B Agent Instances in Protégé 

E. Antibody Agent 

It is the job of the antibody agent to cause the proper response 

to be made in response to a given disturbance. According to the 

proposed model, it serves as the reactant identification agent 

most suitable for the reaction in question. It’s possible that the 

disturbance would be stationary, but it's also possible that it may 

be mobile and spread to neighboring stations. Antibody agents 

are used to perform a thorough data search and eliminate 

unnecessary reactions. The B and T agent reactions are 

discussed in Fig. 6. It is made clear in the diagram how the 

antibody agent coordinates its response with the B and T agents. 
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Figure 6: Anti-Body Agent Instances 

F. HISFDH Modelling Formulation 

The purpose of the proposed methodology that is depicted in 

Figure 7 is to identify and address potential faults in a 

manufacturing line. This is accomplished by contrasting the 

expected behavior of two modeled agents, the Antigen agent, 

and the APC agent, with the behavior that is actually exhibited 

by the cell agent. The method entails keeping an eye out for and 

evaluating any peculiar patterns in the behavior of the cell agent 

so that any possible problems can be pinned down to particular 

locations. After that, the modelled agents, B and T, are 

compared to previously defined fault sets so that a suitable 

reaction can be developed to tolerate the fault. To process 

reaction redundancy, using antibody agents and weights per the 

current state of the process have been applied. The data that was 

processed by the antibody agent are then compared by the fault-

tolerant agent, which results in the generation of the final 

response. Figure 7, which depicts a flowchart, illustrates the 

proposed technique. This methodology consists of five stages, 

all of which are displayed in the flowchart. 

 

• Detect  

• Identify 

• Evaluate 

• Coordinate 

• Validate 

 

Figure 7: Data Flow in Proposed Methodology 

There is a numerical value that represents the reaction (RV). 

The appropriate control action is determined by looking up this 

response value in a database. There are three possible results 

from the system. In the event of a critical defect or disruption, 

the process status could be changed to "stopped." Second, it has 

the ability to "resume its running condition for some time and 

then halt it" in the event of a defect or disruption of medium 

severity, protecting against sudden shutdowns of the process 

and so reducing the number of rejections. Third, "keep on 

executing the procedure" is represented by the RV value of 3. 

This again helps to keep things running smoothly without 

interruptions, which is great for both productivity and customer 

satisfaction. The proposed method's symbols and their 

meanings are laid forth in Table 1 below. 

TABLE I: Proposed Methodology Symbol 

 

V. RESULTS AND DISCUSSION  

A. Detection 

The key and lock mechanism is used by the biological immune 

system to identify the invading pathogen. Where an antigen (a 

particular protein) on the pathogen's surface allows it to be 

identified. Activated cell-mediated innate immunity (APC) 

cells have unique receptors on their surface (one for each 

distinct antigen) to identify and bind to that pathogen. Here, the 

data collected from the factory floor is used to simulate the 

biological process in question. The term "cell agent" describes 

the nature of this information. The cell agent stores both real 
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and simulated information, whereas the APC and Antigen 

agents store alarm matrices from the production process (real 

and virtual). Each tag has an associated alert value, as seen in 

(4) and (5). The difference between cell agent data and APC 

and antigen agent data reveals the disruption. Checks are made 

at each iteration of the control logic. Every data from the 

process is provided mathematically in terms of both virtual and 

physical tags. To provide for the potential of both sequential 

and parallel processing, the entire manufacturing facility is 

broken down into a variety of different workstations, as shown 

in equation (1).  

Cell Agent,CA={W_s 1,W_s 2,W_s 3……..W_s n}          (1)                          

The process tags are separated into two distinct categories by 

the cell agent: actual and virtual. "n" stands for the total number 

of workstations, and "m" indicates the number of virtual and 

actual tags that are contained within these workstations. "CA r" 

and "CA v" are the identifiers that are used for the real and 

virtual tags found in the workstations, respectively. The inputs 

and outputs (I/Os) of the workstations are represented by 

columns in the cell agent of the spreadsheet. 

𝐶𝐴𝑟 =

[
 
 
 
 
𝑟11 𝑟21 . 𝑟𝑛1

𝑟12 𝑟22 . 𝑟𝑛2

. . . .

. . . .
𝑟1𝑚 𝑟2𝑚 . 𝑟𝑛𝑚]

 
 
 
 

 (2) 

𝐶𝐴𝑣 =

[
 
 
 
 
𝑣11 𝑣21 . 𝑣1𝑛

𝑣12 𝑣22 . 𝑣2𝑛
. . . .
. . . .

𝑣𝑚 𝑣2𝑚 . 𝑣𝑛𝑚]
 
 
 
 

 (3) 

𝐴𝑛𝑡𝑖𝑔𝑒𝑛 =

[
 
 
 
 
𝑟𝑎11 𝑟𝑎21 . 𝑟𝑎1𝑛
𝑟𝑎12 𝑟𝑎22 . 𝑟𝑎2𝑛

. . . .

. . . .
𝑟𝑎1𝑚 𝑟𝑎2𝑚 . 𝑟𝑎𝑛𝑚]

 
 
 
 

 (4) 

 

𝐴𝑃𝐶 =

[
 
 
 
 
𝑣𝑎11 𝑣𝑎21 . 𝑣𝑎1𝑛
𝑣𝑎12 𝑣𝑎22 . 𝑣𝑎2𝑛

. . . .

. . . .
𝑣𝑎1𝑚 𝑣𝑎2𝑚 . 𝑣𝑎𝑛𝑚]

 
 
 
 

 (5) 

Disruptions in a production system can be detected in this way 

by employing an AND gate to compare condition (2) with 

condition (4) and condition (3) with condition (5).  

CAr AND Antigen and CAv AND APC→     →   Fr 

FrFrand Fv       (6) 

The two resulting matrices are called real disruption identified 

(Fr) and virtual disruption detected (Fv). They are processed 

further for defect identification and updated at each scan cycle.  

B. Identification 

If problems have been found, appropriate corrective or 

preventative actions must be taken. A practical solution is 

provided by the presented model. In the biological immune 

system, B-cells secrete antibodies that fight off invaders and 

repair injured cells. When T-cells fuse with B-cells, they send a 

signal via interleukin that causes the B-cell colony to grow. 

In this strategy, synthetic B-cells (B-Agents) are deployed to 

detect and report "antigen agent flaws," while synthetic T-cells 

(T-Agents) are tasked with keeping an eye on antigen-

presenting cells. Since equations (7) and (8) express identity 

matrices, the B and T agents can detect and pinpoint the source 

of a problem by associating "1s" with only the tags that are in 

error 

𝐵(𝐶𝑒𝑙𝑙) =

[
 
 
 
 
1 1 . 1
1 1 . 1
. . . .
. . . .
1 1 . 1]

 
 
 
 

      (7)   

𝑇(𝐶𝑒𝑙𝑙) =

[
 
 
 
 
1 1 . 1
1 1 . 1
. . . .
. . . .
1 1 . 1]

 
 
 
 

     (8) 

Fault identification is achieved by dot product between B and 

Fr, T and Fv with 

Fr Dot B=Fr.B=ABr (Antibody Real)    (9)                                                                                        

Fv Dot T=Fv.T=ABv (Antibody Virtual)       (10)                                                                                    

The two matrices generated through dot product are presented 

to anti body agent.  

G. Coordination 

The antibody's job is to attach to the infection and neutralize or 

kill it. After determining if a fault is simulated or real, the 

suggested method moves forward with fixing it. Antibody agent 

is shown it to determine if the problem is static or dynamic. As 

seen in Fig. 7, after disturbances have been discovered, they are 

coordinated between B and T responses and given weights. It 

takes in matrices that are the results of multiplying the dot 

product of B and T with the matrices for the real and virtual 

faults, as shown in equation (9), and (10). 

In mathematics, an antibody agent can be written as a weighted 

matrix. Every manufacturing process tags come with their own 

related weights. The MTTR value of the process is used as a 

basis for creating a weight matrix. 

Mean Time to Repair (MTTR) equals (total downtime) divided 

by 1. (number of breakdowns). The tag weight matrix, 

calculated using MTTR as described in (11). 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                      ISSN: 1673-064X 
  

http://xisdxjxsu.asia                                                               VOLUME 20 ISSUE 06 JUNE 2024                                                                332-343 

𝑊𝑎𝑏 =

[
 
 
 
 
𝑊11 𝑊21 . 𝑊1𝑛
𝑊12 𝑊22 . 𝑊2𝑛

. . . .

. . . .
𝑊1𝑚 𝑊2𝑚 . 𝑊𝑛𝑚]

 
 
 
 

 (11) 

To obtain the weights of only the faulty tags that occurred 

during the process, the dot product between the weight matrices 

(11) and the antibody matrices (9) and (10) is computed. This 

is done using equations (12) and (13). The resulting product 

gives the weight of each fault set in the process. This weight is 

then used to determine the level of fault tolerance required for 

the process. By comparing the weight of the fault set to a pre-

defined threshold, the fault-tolerant agent can determine the 

appropriate response to the fault, whether it requires a simple 

correction or a more complex reaction. This helps to ensure that 

the manufacturing process remains efficient and effective, with 

minimal downtime or disruptions. 

 ABr Dot W_ab=ABr.W_ab=W_R                          (12)                         

(Anti body weight value for real tag)                          

ABv Dot W_ab=ABv.W_ab=W_V                        (13)                                 

(Anti body weight value for virtual tag) 

W_R and W_V  Are the final values obtained through anti body 

agent that are forwarded to fault tolerant agent. 

H. Finalization 

In response to the completion of the antibody agent reaction, 

the Fault Tolerant (FT) agent is activated. First, the reaction is 

presented to FT, which takes in data from the antibody and 

continuously monitors the reaction's aftereffects. The threshold 

for assigning weights is set, and from then on, each determined 

response receives some weight to be used against any reaction. 

If the value is less than the threshold, the answer can be started; 

otherwise, the next available response is chosen. 

Each workstation's process status, whether active or inactive, is 

determined by a fault-tolerant agent. Process status vector (14) 

is an example of this type of vector. 

Ps   (Process Status)    =           {p1,p2,….pn}  (14) 

The weights of malfunctioning workstations, Pw, are 

introduced by the fault-tolerant agent in a separate step 

(equation) (15). 

Pw={W1,W2,W3……..Wn}           (15) 

Dot multiplication of ABr by Pw is used to give affected 

workstations their proper weights, as demonstrated in (10). 

Ft(Fault tolerant)=ABr.Pw   (16) 

Ft(Fault tolerant)=ABv.Pw   (17) 

Since 

ABr=   {(1,&if faulty workstation @0,&if workstation has  no 

fault)┤        And 

ABv=  {(1,&if faulty workstation @0,&if workstation has  no 

fault)┤    

The last step in (16) and (17) assign weights only to the faulty 

workstations.  

The MTRR value, which is the sum of the faulty tag weight and 

the workstation weight, is critically important for determining 

the response value (finalize reaction) of fault. The process 

threshold value for a workstation's defects is presented in the 

equation together with all the factors that contribute to it (18).  

RV(i)=(⍺Ft(i)-βW_(R,V) (i))                            (18)                       

The equation (13) is used to calculate the final response value 

(RV(i)) based on the values of ABr, ABv, and Ft. The tuning 

parameters β and ⍺ are used to adjust the weights of the faulty 

tags and the response value. The faulty station's weights (Ft) are 

calculated using equation (11) and represent the weights of only 

the faulty tags that occurred during the process. The final 

response value (RV(i)) is a key factor in determining whether 

the process will continue running or be stopped. The response 

value is calculated based on alarm trip points, which are pre-set 

values that indicate when an alarm should be raised to alert 

operators of potential issues. If the response value is below the 

alarm trip point, the process will continue running. If the 

response value exceeds the alarm trip point, an alarm will be 

raised, and the process will be stopped to prevent further 

damage or issues.  

Depending on the value of the parameter, the significance of 

process weightage and process status will change. These 

parameters are adjusted for various cases. The final tolerance 

value will be influenced more by the aforementioned process 

parameters as increases. In a similar vein, the value of modifies 

the significance of tag weighting; a higher value increases the 

influence of tag on response value. At long last, the full data 

flow cycle has been completed. What you see in Fig.8 is how 

the response is formed. 

Hence, this method yields three distinct classes of response 

values (RV). The high critical level that triggers "stopping the 

process" describes the maximum value for a specific defect. To 

explain, consider (17), which states that a faulty station has a 

greater impact on the process than a faulty tag, but that the latter 

may be safely ignored. This high critical number serves as a trip 

point, beyond which the system must shut down. When the RV 

value is at its lowest, it indicates that a malfunctioning 

workstation has so little impact on the whole that it may be 

safely disregarded. The tag is heavily weighted, but the 

workstation is not a crucial part of the process as a whole. The 

resulting action is to "continue processing". Certain situations 

may call for a response of "continue the state of running for 

some time, then halt it," which occurs when the RV value is in 
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the medium range and is thus classified as medium level 

critical. In this example, the malfunctioning station and faulty 

tag have a moderate effect on the entire operation 

 

Figure 8:  Flow Chart for HISFDH 

 

 

Figure 9: Flow Chart for entire process 

 

 

Figure 10: Agent instances for test bed 

I. Analyzing established control logic 

Methods like the HISFDH and the Fault and Behavioral 

Anomaly Detection Tool for Manufacturing Process (proposed 

by Gosh et al. After 24 hours of operation, the process has 

experienced various disruptions due to various causes, which 

have had an effect on downtime, consumer-centric value, and 

process efficiency. In Table 1 and Fig. 12, we can see the 

breakdown of the disruptions and the downtime in minutes. The 

downtime analysis of the process after 24 hours of nonstop 

operation is presented in Fig. 9, which provides a detailed 

breakdown of the downtime for each workstation. According to 

the analysis, the estimated downtime for the entire operation is 

139 minutes (2.12 hours). According to the findings of the 

investigation, the Conveyer End Position Proximity Signal 

Error Alarm Enable (C.P.P.S.E.A.E), which resulted in a 

downtime of 53 minutes, is the parameter that is most likely to 

be held accountable for the downtime that occurred at 

workstation 2 (the conveyor section). The Conveyer Position 

Proximity Sensor Detect Status (C.P.P.S.D.S) at workstation 1 

is the second most likely parameter that is responsible for 

downtime. This particular parameter generated a downtime of 

thirteen minutes. The Conveyor Actuator Run Command and 

the Conveyor Actuator Run Status are two additional 
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characteristics that each produced a downtime of about 9 

minutes and contributed to the disturbances that occurred 

throughout the process. 11 minutes of unscheduled downtime 

were incurred as a result of the Conveyor Small Proximity 

Sensor Signal Error Alarm Enable (C.S.P.S.S.E.A.E) error. 

Table 2: Downtime analysis of tags using FBMTP 

 

In conclusion, the findings of the investigation indicate that the 

Control Air Regulator Station (CARS) and the Control Air Unit 

Run Station (CAURS) had the least amount of downtime 

overall, with 9 and 7 minutes, respectively. In general, the 

comprehensive downtime analysis is beneficial in that it assists 

in the identification of the essential parameters that need to be 

addressed in order to improve the effectiveness of the process 

and reduce downtime. 

 

Figure 11: Process downtime in 24 hours 

Moreover, the data contains numerous disruption types that can 

be found in nearly every tag shown in Fig.10. It analyses the top 

five significant tags that account for over 50.0% of the total 

downtime caused by disruption. There are many causes of 

disruption in this case, but the top five are accounted for in the 

table above. As they have such a negative effect on the proposed 

model's consumer-centric value and efficiency, they are the 

model's primary concern. 

J. Implementation of the proposed HISFDH model 

It is run under the same settings as before after the suggested 

HISFDH model, S7-1200 PLC, and WinCC Flexible have been 

incorporated into the test bench. To evaluate the efficacy of the 

methodology, scripting capabilities were included in the 

SCADA software that was utilized. When the framework was 

proposed, the primary emphasis was placed on stimulating 

parameters such as C.P.P.S.D.S. and C.S.P.S.E.E.E. After a 

period of rest for twenty-four hours, the test bed was utilized 

once more. The cumulative amount of downtime was cut by 50 

minutes, bringing the total to 82 minutes (see Table 3 and 

Fig.12). It is important to note that the anticipated results were 

much higher for the factors that were the focus of the study. 

C.P.P.S.D.S., for instance, was responsible for a 10-minute 

decrease, going from 13 minutes down to 3, whereas 

C.P.P.S.E.A.E. had the most significant downturn of 16 

minutes, going from 20 minutes down to 4, and C.S.P.S.E.A.E., 

C.A.R.C., and C.A.R.S. were each noticed with a 5-minute 

decrease, going from 11 minutes On the other hand, the factors 

that had a less significant impact on downtime in the past 

showed a tendency in the opposite direction. For instance, the 

amount of time that the C.P.P.S.N.D.S. downtime interruption 

occurs has increased by 4 minutes, the amount of time that it 

occurs at C.P.P.S.D.C. has grown by 5 minutes, and the amount 

of time that it occurs at C.L.P.P.S.F.B. has increased by 10 

minutes. Table 3 and the accompanying figure provide 

irrefutable evidence that the proposed architecture drastically 

cuts downtime, dramatically boosts process efficiency, and 

places a priority on adding value for consumers. 

 

Figure 12: Minimal HISFDH-Related Process Downtime (in 

Minutes) 
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Table 3: Process downtime on implementation of HISFDH 

 

 

 

VI. CONCLUSION 

In this research, we used an artificial immune system to propose 

and prove a preferable solution to the problem of production 

disruption. After 24 hours of data collection, ontologies were 

first built, then deployed (in a lab setting). The results were 

satisfactory in that just 24 percent of all disruptions occurred in 

24 hours, and only 36 minutes of those were major (targeted) 

disruptions. After HISFDH was introduced, the efficiency of 

the process increased by 5%. In addition, the process efficiency 

was improved by a whopping 31% due to the decreased amount 

of downtime experienced in the five focus areas. There was a 

5.1% increase in output as a result of this change. As a result, 

the experimental apparatus had successfully categorized an 

additional 216 containers. The potential for the proposed model 

to improve the plant's efficiency is promising. 

Further applications of the framework include the ability to 

clearly illustrate a variety of disruption management difficulties 

across a wide range of production factors, including stockouts, 

shortages of raw materials, and labor shortages. The model can 

also be improved to take into account the alignment of 

workstations in the flow path. 

 

VII. REFERENCES 

  

[1] A. Hofmeyr, Steven, and S Forrest. 1999. 

“Architecture for an Artificial Immune System.” 

Evolutionary Computation 7: 45–68. 

[2] Alenljung, Tord, Markus Sköldstam, Bengt 

Lennartson, and Knut Åkesson. 2007. “PLC-Based 

Implementation of Process Observation and Fault 

Detection for Discrete Event Systems.” Proceedings of 

the 3rd IEEE International Conference on Automation 

Science and Engineering, IEEE CASE 2007, 207–12. 

https://doi.org/10.1109/COASE.2007.4341752. 

[3] Anchor, KP, JB Zydallis, and GH Gunsch. 2002. 

“Extending the Computer Defense Immune System: 

Network Intrusion Detection with a Multiobjective 

Evolutionary Programming Approach.” In ICARIS 

2002: 1st International Conference on Artificial 

Immune Systems Conference Proceedings, 12–21. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.9.6943&amp;rep=rep1&amp;type=pdf. 

[4] Aytug, Haldun, Mark A. Lawley, Kenneth McKay, 

Shantha Mohan, and Reha Uzsoy. 2005. “Executing 

Production Schedules in the Face of Uncertainties: A 

Review and Some Future Directions.” European 

Journal of Operational Research 161 (1): 86–110. 

https://doi.org/10.1016/j.ejor.2003.08.027. 

[5] Azzini, Antonia, Ernesto Damiani, Gabriele 

Gianini, and Stefania Marrara. 2009. “An Ontology for 

Artificial Immune Systems.” 2009 3rd IEEE 

International Conference on Digital Ecosystems and 

Technologies, DEST ’09, 324–28. 

https://doi.org/10.1109/DEST.2009.5276747. 

[6] Bao, Jian, Huifeng Wu, and Yimajian Yan. 2014. 

“A Fault Diagnosis System-PLC Design for System 

Reliability Improvement.” International Journal of 

Advanced Manufacturing Technology 75 (1–4): 523–

34. https://doi.org/10.1007/s00170-014-6166-z. 

[7] Battini, Daria, Martina Calzavara, Alena Otto, and 

Fabio Sgarbossa. 2017. “Preventing Ergonomic Risks 

with Integrated Planning on Assembly Line Balancing 

and Parts Feeding.” International Journal of Production 

Research 7543: 1–21. 

https://doi.org/10.1080/00207543.2017.1363427. 

[8] Bayar, Nawel, Saber Darmoul, Sonia Hajri-Gabouj, 

and Henri Pierreval. 2015. “Fault Detection, Diagnosis 

and Recovery Using Artificial Immune Systems: A 

Review.” Engineering Applications of Artificial 

Intelligence 46 (August): 43–57. 

https://doi.org/10.1016/j.engappai.2015.08.006. 

[9] Bruccoleri, Manfredi, Zbigniew J. Pasek, and 

Yoram Koren. 2006. “Operation Management in 

Reconfigurable Manufacturing Systems: 

Reconfiguration for Error Handling.” International 

Journal of Production Economics 100 (1): 87–100. 

https://doi.org/10.1016/j.ijpe.2004.10.009. 

[10] Castro, Leandro N. De, and Fernando J. Von 

Zuben. 2002. “Learning and Optimization Using the 

Clonal Selection Principle.” IEEE Transactions on 

Evolutionary Computation 6 (3): 239–51. 

https://doi.org/10.1109/TEVC.2002.1011539. 

[11] Castro, Leandro Nunes de, and Fernando J. Von 

Zuben. 2000. “The Clonal Selection Algorithm with 

Engineering Applications.” Proceedings of GECCO, 

36–39. 

http://xisdxjxsu.asia/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.6943&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.6943&amp;rep=rep1&amp;type=pdf
https://doi.org/10.1016/j.ejor.2003.08.027
https://doi.org/10.1109/DEST.2009.5276747
https://doi.org/10.1007/s00170-014-6166-z
https://doi.org/10.1080/00207543.2017.1363427
https://doi.org/10.1016/j.engappai.2015.08.006
https://doi.org/10.1016/j.ijpe.2004.10.009
https://doi.org/10.1109/TEVC.2002.1011539


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                      ISSN: 1673-064X 
  

http://xisdxjxsu.asia                                                               VOLUME 20 ISSUE 06 JUNE 2024                                                                332-343 

[12] Cauvin, A. 2005. “Analyse, Modélisation et 

Amélioration de La Réactivité Des Systèmes de 

Décision Dans Les Organisations Industrielles.” 

Habilitation à Diriger Des Recherches. 

[13] Darmoul, Saber, Henri Pierreval, and Sonia Hajri-

Gabouj. 2011. “Using Ontologies to Capture and 

Structure Knowledge about Disruptions in 

Manufacturing Systems: An Immune Driven 

Approach.” IEEE International Conference on 

Emerging Technologies and Factory Automation, 

ETFA, no. September 2011. 

https://doi.org/10.1109/ETFA.2011.6059033. 

[14] Darmoul, Saber, Henri Pierreval, and Sonia Hajri-

Gabouj. 2013. “Handling Disruptions in Manufacturing 

Systems: An Immune Perspective.” Engineering 

Applications of Artificial Intelligence 26 (1): 110–21. 

https://doi.org/10.1016/j.engappai.2012.09.021. 

[15] Darmoul, Saber, Henri Pierreval, and Sonia Hajri–

Gabouj. 2011. “An Immune Inspired Multi Agent 

System to Handle Disruptions in Manufacturing 

Production Systems.” International Conference on 

Industrial Engineering and Systems Management, 

IESM’2011, no. May. 

[16] Dasgupta, D, and S Forres. 1999. “Artificial 

Immune Systems in Industrial Applications.” 

Proceedings of the Second International Conference on 

Intelligent Processing and Manufacturing of Materials, 

257–67. 

[17] Dasgupta, D, and S Forrest. 1995. “Tool Breakage 

Detection in Milling Operations Using a Negative-

Selection Algorithm.” 

[18] Deaton, R., M. Garzon, J.A. Rose, R.C. Murphy, 

S.E., Jr. Stevens, and D.R. Francheschetti. 1997. “A 

DNA Based Artificial Immune System for Self-

Nonself\ndiscrimination.” 1997 IEEE International 

Conference on Systems, Man, and Cybernetics. 

Computational Cybernetics and Simulation 1: 862–66. 

https://doi.org/10.1109/ICSMC.1997.626210. 

[19] Forrest, Stephanie, Alan S. Perelson, Lawrence 

Allen, and Ra jesh Cherukuri. 1994. “Self-Nonself 

Discrimination in a ComputerNo Title.” Research in 

Security and Privacy, 1994. Proceedings, 202–12. 

[20] Fukuda, T, K Mori, and M Tsukiama. 1999. 

“Parallel Search for Multi-Modal Function 

Optimization with Diversity and Learning of Immune 

Algorithm.” Artificial Immune Systems and Their 

Applications, 210–20. https://doi.org/10.1007/978-3-

642-59901-9_11. 

[21] Ghosh, Arup, Jooyeoun Lee, and Gi-nam Wang. 

2016. “PLAT : An Automated Fault and Behavioural 

Anomaly Detection Tool for PLC Controlled 

Manufacturing Systems” 2016: 1–27. 

[22] Ghosh, Arup, Shiming Qin, Jooyeoun Lee, and Gi 

Nam Wang. 2017. “FBMTP: An Automated Fault and 

Behavioral Anomaly Detection and Isolation Tool for 

PLC-Controlled Manufacturing Systems.” IEEE 

Transactions on Systems, Man, and Cybernetics: 

Systems 47 (12): 3397–3417. 

https://doi.org/10.1109/TSMC.2016.2633392. 

[23] Greensmith, Julie, and Steve Cayzer. 2003. “An 

Artificial Immune System Approach to Semantic 

Document Classification.” Artificial Immune Systems, 

136–37. https://doi.org/10.1145/1066677.1066889. 

[24] Grubic, Tonci, and Ip Shing Fan. 2010. “Supply 

Chain Ontology: Review, Analysis and Synthesis.” 

Computers in Industry 61 (8): 776–86. 

https://doi.org/10.1016/j.compind.2010.05.006. 

[25] Hajej, Zied, Nidhal Rezg, and Ali Gharbi. 2018. 

“Quality Issue in Forecasting Problem of Production 

and Maintenance Policy for Production Unit.” 

International Journal of Production Research 56 (18): 

6147–63. 

https://doi.org/10.1080/00207543.2018.1478150. 

[26] Hart, E., P. Ross, and J. Nelson. 1998. “Producing 

Robust Schedules via an Artificial Immune System.” 

1998 IEEE International Conference on Evolutionary 

Computation Proceedings. IEEE World Congress on 

Computational Intelligence (Cat. No.98TH8360), 464–

69. https://doi.org/10.1109/ICEC.1998.699852. 

[27] Hu, W., A. G. Starr, and A. Y.T. Leung. 1999. 

“Two Diagnostic Models for PLC Controlled Flexible 

Manufacturing Systems.” International Journal of 

Machine Tools and Manufacture 39 (12): 1979–91. 

https://doi.org/10.1016/S0890-6955(99)00022-X.  

[28] Hu, W., A. G. Starr, and A. Y.T. Leung. 2003. 

“Operational Fault Diagnosis of Manufacturing 

Systems.” Journal of Materials Processing Technology 

133 (1–2): 108–17. https://doi.org/10.1016/S0924-

0136(02)00252-2. 

[29] Huang, Sunan, Kok Kiong Tan, and Mingbo Xiao. 

2015. “Automated Fault Diagnosis and 

Accommodation Control for Mechanical Systems.” 

IEEE/ASME Transactions on Mechatronics 20 (1): 

155–65. 

https://doi.org/10.1109/TMECH.2014.2322652. 

[30] Ishida, Yoshiteru. 1993. “An Immune Network 

Model and Its Applications to Process Diagnosis.” 

Systems and Computers in Japan 24 (6): 38–46. 

https://doi.org/10.1002/scj.4690240604. 

[31] Ishiguro, a., Y. Watanabe, and Y. Uchikawa. 1994. 

“Fault Diagnosis of Plant Systems Using Immune 

Networks.” Proceedings of 1994 IEEE International 

Conference on MFI ’94. Multisensor Fusion and 

Integration for Intelligent Systems, 34–42. 

https://doi.org/10.1109/MFI.1994.398475. 

[32] Klein, Stéphane, Lothar Litz, and Jean-jacques 

Lesage. 2014. “fault detection of discrete event systems 

using an identification approach.” Quality, no. July 

2005. 

[33] Knight, T., and J. Timmis. 2001. “AINE: An 

Immunological Approach to Data Mining.” 

Proceedings 2001 IEEE International Conference on 

Data Mining, 297–304. 

https://doi.org/10.1109/ICDM.2001.989532. 

[34] Leandro Nunes de, Castro, and Timmis Jonathan. 

2002. Artificial Immune Systems: A New 

Computational Intelligence Approach. 

http://xisdxjxsu.asia/
https://doi.org/10.1109/ETFA.2011.6059033
https://doi.org/10.1016/j.engappai.2012.09.021
https://doi.org/10.1109/ICSMC.1997.626210
https://doi.org/10.1007/978-3-642-59901-9_11
https://doi.org/10.1007/978-3-642-59901-9_11
https://doi.org/10.1109/TSMC.2016.2633392
https://doi.org/10.1145/1066677.1066889
https://doi.org/10.1016/j.compind.2010.05.006
https://doi.org/10.1080/00207543.2018.1478150
https://doi.org/10.1109/ICEC.1998.699852
https://doi.org/10.1016/S0890-6955(99)00022-X
https://doi.org/10.1016/S0924-0136(02)00252-2
https://doi.org/10.1016/S0924-0136(02)00252-2
https://doi.org/10.1109/TMECH.2014.2322652
https://doi.org/10.1002/scj.4690240604
https://doi.org/10.1109/MFI.1994.398475
https://doi.org/10.1109/ICDM.2001.989532


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                      ISSN: 1673-064X 
  

http://xisdxjxsu.asia                                                               VOLUME 20 ISSUE 06 JUNE 2024                                                                332-343 

[35] Liu, Tongshun, Kunpeng Zhu, and Liangcai Zeng. 

2018. “Diagnosis and Prognosis of Degradation 

Process via Hidden Semi-Markov Model.” 

IEEE/ASME Transactions on Mechatronics 23 (3): 

1456–66. 

https://doi.org/10.1109/TMECH.2018.2823320. 

[36] Machado, Alencar, Daniel Lichtnow, Ana Marilza 

Pernas, Amel Bouzeghoub, Iara Augustin, and Leandro 

Krug Wives. 2015. “A Framework Reactive and 

Proactive for Pervasive Homecare Environments” 2: 

320–38. https://doi.org/10.1007/978-3-319-22348-3. 

 

AUTHORS 

Zain Abbas: Holds a Bachelor's in Electrical Engineering 

from the Comsats University of Science and Technology, 

Islamabad. Currently pursuing a Master’s Program in 

Mechatronics Engineering from UET Peshawar. 

Sher Shah: Holds a Bachelor's in Mechatronics 

Engineering from the University of Engineering and 

Technology, Peshawar. Currently pursuing a Master’s 

Program in Industrial Management and Innovation from 

Uppsala University, Sweden. 

Zubair Ahmad Khan: Holds a Ph.D. in Mechatronics 

from the University of Engineering & Technology, 

Peshawar, Pakistan. Completed an MS in Mechanical 

Engineering from the University of Engineering & 

Technology, Peshawar, and a BE in Mechatronics 

Engineering from the National University of Science and 

Technology, Pakistan. Currently serving as a Lecturer in 

the Department of Mechatronics Engineering at the 

University of Engineering & Technology, Peshawar. 

Hamza Ahmad Khan: Holds a Master’s in Mechatronics 

Engineering from the University of Engineering and 

Technology, Peshawar. 

 

 

Correspondence Author – Zain Abbas 

http://xisdxjxsu.asia/
https://doi.org/10.1109/TMECH.2018.2823320

