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Abstract 

The application of IoT has given rise to the adoption of mobile edge computing network architecture by many IT-based 

organizations. However, the problem of limited energy supply, processing capacity, storage of mobile devices, and the 

inherent problem of bandwidth and transmission delay incurred in offloading tasks to the remote cloud server have been 

the challenges. In this research, we propose Energy Efficient Canonical Polyadic Decomposition based Offloading 

Algorithm. This algorithm utilizes canonical Polyadic decomposition based on rank_1 to decompose the input task data to 

produce the intermediate output with reduced task data size. The reduced data from the mobile layer is offloaded to the 

remote processing device where the processing capacity, energy, and storage are almost unlimited. The reduction method 

reduces the tasks deployed at the mobile layer, thereby reducing the mobile devices busy time and energy consumption. The 

data reduction ratio is used to simulate the computation offloading in mobile edge computing. The result from the 

simulation shows that the proposed algorithm improved the mobile devices energy consumption by 83.38% than the 

existing algorithms. The better result is achieved through the reduced data reduction ratio and reduced number of 

deployed task on mobile devices which are achieved through canonical Polyadic decomposition. 

 

 

Index Terms— Computation Offloading, Mobile Computing, Energy consumption, Task Scheduling, Resource Allocation  

 

1. INTRODUCTION 

he computing resources are under great revolutions these days. The introduction of cloud computing brought about so many 

technological changes within and around us. Individuals and organizations are leveraging the nearly unlimited storage and 

processing power of cloud service providers to revolutionize their modus operandi. The unlimited resources benefits of cloud 

computing instigated explosive growth of data in the cloud [1]. These advantages of the cloud infrastructure encouraged 

spontaneous application of Internet of Things (IoT) in different facets of life, such as healthcare, education, entertainment, virtual 

reality, augmented reality, and agricultural monitoring and processing. The increased application of IoT increased bandwidth 

usage and every device struggles to access the cloud either to send or receive information from the cloud server. This traffic issue 

introduced delay and energy consumption issues in the IoT devices that are limited in battery life. Mobile edge computing 

(MEC) aims at reducing the delay incurred in mobile cloud computing (MCC). MEC comes with processing capability near the 

task generating point as shown in Figure 1. 

T 
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Fig. 1 Mobile Edge Cloud Computing Architecture 

MEC is designed to process most of the data generated at the edge devices within the edge of the network. With time, MEC will  

take over all tasks processing while the cloud will mainly be used for storage if the issue of limited energy and processing 

capability can be further addressed[2,3]. The energy consumption at the edge is one of the greatest hindrances of the IoT 

application in MEC because devices are battery-powered and therefore are limited in their energy supply [4]. Energy 

consumption had been identified as a major issue in IoT application in MEC. This problem can be addressed through hardware or 

software perspective [1,5]. In software point of view, solutions can either be achieved through task scheduling [6–8] or ressources 

allocation [9,10].  

In task scheduling point of perspective, Harris Hawks based optimization algorithm is proposed by [7] to optimize the energy 

usage in IoT network. Though the paper contributed in energy minimization, but the complexity of the method makes it difficult 

to be applied in systems with low configuration. Binary and partial offloading was proposed by [8], the paper proposed non-

convex joint optimization to solve NP-hard energy problem in task offloading scheme. The proposed scheme contributed in 

energy consumption optimization but the scheme is time consuming because of so many options considered before convergence. 

Though there are limited researches yet on the energy optimization via input data reduction. [6] adopted local data reduction 

acquisition algorithm in addressing energy issue in IoT network. The paper proposed Markovian birth death method but the 

method is not suitable for low configured IoT devices. Convolution’s data reduction approach was proposed by [11]. The paper 

applies part of CNN convolutions at the mobile device while the remaining convolutions for the classification analysis are 

offloaded to the cloud. The problem with this method is how to determine the number of convolutional layers to be applied at 

mobile level without increasing the delay above the task required time constrains. Such computational intensive analysis such as 

CNN classification analysis is better deployed at the cloud with more processing capacity, energy, and storage.  

In this paper, the research focused on the energy consumption of mobile devices in IoT applications in MEC architecture. The 

solution of energy consumption is proposed via task scheduling. Specifically, we tackled the problem of energy consumption 

through the data reduction method. We proposed Energy Efficient Canonical Polyadic Decomposition based Offloading 

Algorithm (EECPD) to reduce input tasks data such that the task can be offloaded faster to the remote processor where the 

processing capacity is almost unlimited. This is achieved through decomposing the input tasks into several rank_1 based on the 

CPD approach. Consequently, the main contributions of this paper are; 

Cloud layer 

Mobile layer 

Mobile Edge Server 
Mobile Edge Server 

Mobile Edge Server 
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• Input tasks are decomposed via rank_1 based CPD method and the data ratio of the output data to the input data is 

calculated. 

• With the data ratio from the CPD data decomposition, the input tasks are offloaded to the cloud for processing and the 

reduced number of offloaded tasks is achieved. 

• The deployed task which is the total input tasks minus the number of tasks offloaded is determined together with the 

energy consumed at the level of the mobile devices. 

• The results of the proposed EECPD are compared with the online algorithm and low bandwidth first (LBF) algorithm 

which shows that the EECPD algorithm is performing better than the existing state of the art in terms of energy 

consumption at the mobile layer, data reduction ratio, and number of offloaded tasks.  

The rest of this work is organized as follows. The next section discusses the related work as it concerns the energy consumption 

problem of MEC. Following is the problem of energy consumption in task scheduling which is formulated. Next, is the method 

of the proposed solution, followed by experimental settings and performance evaluations, and lastly, we presented the 

conclusion.  

2. RELATED WORK 

Energy efficiency is one of the main research issues in both MEC and cloud computing [12–15]. MEC or Fog computing 

complements cloud computing in addressing task processing challenges especially in latency sensitive cases [16,17]. The energy 

problem is still limiting some IoT applications in different areas. The energy problem is addressed in [18]. The authors proposed 

PSO based on Tabu Search to solve the issue of energy consumption in cloud computing, which is viewed as an NP-hard 

problem. Though the proposed algorithm outperformed simple PSO, Ant Colony Optimization, and Tabu Search, the delay 

incurred during task transmission was not handled. The algorithm considered only the resource allocation without recourse to 

task scheduling. According to [19], the problem of energy in MEC is viewed as a mixed integer nonlinear programming problem. 

They proposed reinforcement learning based on value iteration to achieve the policy of balancing the resource allocation and 

computation offloading in the system. The proposed method performs well in so many baseline methods except for the 

exhaustion method. Joint optimization of energy and latency problems for mobile edge computing is proposed in [20]. The multi-

objective problem of energy consumption and latency is addressed by proposing a modified non-dominated sorting genetic 

algorithm (NSGA-II). The modified NSGA-II improved the tradeoff between latency and energy consumption for IoT 

applications. IoT can be applied in so many areas including in a vehicular network [21]. Though these IoT applications are 

hampered by mobile cloud computing issues [2]. The application of IoT in unmanned aerial vehicle-assisted MEC networks has 

energy issue as one of its greatest challenges. This is because both the unmanned aerial vehicle (UAV) and the mobile terminal 

(MT) are all limited in battery life. The solution to the problem of energy consumption is proposed in [20] which adopts the 

iterative algorithm with low complexity to solve the non-orthogonal multiple access (NOMA) problem of the network. [22] 

proposes energy efficient optimization to solve the energy problem in multiuser mobile edge computing based on a machine 

learning approach. The paper considered three criteria: the first criterion aims at linearly minimizing both energy and latency. 

The second criterion aims at minimizing the latency while the energy consumption is kept constant. Lastly, energy consumption 

is minimized while the latency is kept constant. The method improved energy efficiency within the tested parameters. A latency 

and energy consumption optimization strategy are proposed in [23] to address the problem of energy and latency of a secured 

MEC for 5G wireless networks. The proposed framework aims at minimizing energy consumption and latency in the 

computation and communication of the network. The paper proposes a linear combination of energy consumption and latency in 

solving the multi-objectives optimization issues. The proposed strategy achieved significant system improvement in terms of 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                            ISSN: 1673-064X   

http://xisdxjxsu.asia                                               VOLUME 20 ISSUE 03 MARCH 2024                                                                 427-441   

 

 

energy and latency. A queue management system based on Green Cloud for 5G networks is proposed in [24] to address the MEC 

problem of energy consumption and latency. The proposed method optimized the system energy consumption and latency 

significantly in a mobile edge computing environment. 

Though researchers are intensifying efforts on seeing that the energy problem in IoT applications is ameliorated, more research is 

still needed to enable IoT to be applied in more sensitive situations like healthcare, traffic, smart city, and self-driving cars[21]. 

This research focuses on energy consumption minimization at the IoT devices from the perspective of task scheduling. This is 

achieved by reducing the input task data size to minimize the offloading time (mobile device busy time) thereby minimizing the 

energy consumption of the mobile device.  

3. ENERGY PROBLEM OF TASK SCHEDULING 

As many tasks are being generated at the mobile layer, the energy consumption at the mobile layer during task processing or 

offloading is getting higher [25]. The process of transmission of these tasks to the cloud is highly time-consuming and bandwidth 

demanding. 

To address these problems, CPD based data reduction algorithm is proposed to reduce the task data size before offloading them 

to reduce the energy usage at the mobile layer. 

The problem of the input tasks in MEC is viewed as a tensor decomposition problem. Mobile devices get signals in 

different formats from their environment. Such signals or tasks can be images videos, sounds, and numbers. Tensors read images 

and videos inform of matrices in order 3 and 4 respectively. 

A multi-way array is known as a tensor. The number of ways, channels, modes, or dimensions of the tensor is referred to as 

the order of the tensor. A vector is seen as a one-dimensional tensor whereas a matrix is a two-order tensor, and any tensor more 

than a two-order tensor is referred to as a higher-order tensor [26]. 

Canonical Polyadic Decomposition factorizes an Nth-order tensor 𝜒 𝜀 ℝ𝐼1×𝐼2×…×𝐼𝑁 into a linear combination of 

𝑎𝑟
(1)

𝑜 𝑎𝑟
(2)

 𝑜 … 𝑜 𝑎𝑟
(𝑁)

 which is a rank-1 tensor [27,28] such that given an input task as 𝜒 the output of the CPD reduction is 

calculated according to Equation (1) 

 𝜒 ≅ ∑ ⋋𝑟  𝑎𝑟
(1)

𝑜 𝑎𝑟
(2)

 𝑜 … 𝑜 𝑎𝑟
(𝑁)𝑅

𝑟=1            (1) 

where 𝜒 is the tensor. The objective is to transform all the input task into the form of 𝜒. 

4. PROPOSED METHOD 

This research proposes Energy Efficient Canonical Polyadic Decomposition-based Offloading Algorithm (EECPD) to address the 

problem of energy consumption in mobile edge computing. The details of the proposed algorithm are present in this section. 

During task offload from the mobile layer to a cloud, the tasks are generated at the mobile devices and preprocessed through the 

CPD algorithm according to Equation (1) and the original data size (𝑋𝑠) and the reduced data size (𝑋𝑝𝑠) is calculated according to 

Equations (2) and (3).  

𝑋𝑠 = ℎ × 𝑤 × 𝑐              (2) 

𝑋𝑝𝑠 = 𝑅(ℎ + 𝑤 + 𝑐)            (3) 

The reduction ratio (𝑅𝑑) of the output of the CPD is calculated as Equation (4). 

𝑅𝑑 = 
𝑋𝑝𝑠

𝑋𝑠
               (4) 

It is assumed that mobile devices have an equal rate of energy consumption at a busy times (𝐸𝑏) and very negligible energy 

consumption at idle time. The busy time can be when the mobile device is offloading tasks to the remote server or when it is 
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processing the tasks which were not offloaded. The offloading time (𝑇𝑓) of original input task without reduction is given in 

Equation (5). 

 𝑇𝑓 =
𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

𝑋𝑠

𝑑𝑖𝑏
            (5) 

where 𝑑𝑖𝑏  is the device i allocated uplink bandwidth. 

While the processing time (𝑇𝑝) for tasks that were not offloaded is given in Equation (6).  

𝑇𝑝 =
𝑋𝑝𝑚

𝐴𝑃𝐶
⁄               (6) 

where 𝑋𝑝𝑚 is the data size processed at the mobile layer, APC is the available processing capacity of the mobile device. If the 

task passes through the proposed data reduction, the transmission time will not be the same because the data size is reduced. 

Therefore, the proposed offloading time (𝑇𝑝𝑓) is given in Equation (7); 

𝑇𝑝𝑓 =
𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

𝑋𝑝𝑠

𝑑𝑖𝑏
             (7) 

The 𝑋𝑠 energy consumption is calculated in Equation (8); 

 𝐸𝑐 = 𝐸𝑏 × (𝑇𝑓 + 𝑇𝑝)             (8) 

While the proposed method energy consumption (𝐸𝑝𝑐) is calculated using Equation (9); 

𝐸𝑝𝑐 = 𝐸𝑏 × (𝑇𝑝𝑓 + 𝑇𝑝)              (9) 

The overall energy consumed by the mobile devices throughout the simulation period for both original tasks average energy 

consumption (𝐸𝑐(𝐴𝑣𝑎𝑟𝑎𝑔𝑒)) and the proposed reduced tasks average energy consumption (𝐸𝑝𝑐(𝐴𝑣𝑒𝑟𝑎𝑔𝑒)) are calculated according 

to Equation (10) and (11) respectively. 

𝐸𝑐(𝐴𝑣𝑒𝑟𝑎𝑔𝑒) = ∑ ∑ (𝐸𝑐)/𝐽𝐾
𝑘=1  𝐽

𝑗=1           (10) 

𝐸𝑝𝑐(𝐴𝑣𝑒𝑟𝑎𝑔𝑒) = ∑ ∑ (𝐸𝑝𝑐)𝐾
𝑘=1 /J 𝐽

𝑗=1            (11) 

where j = 1 to a total number of tasks and k = 1 to a total number of mobile devices.  

Bandwidth is the mobile device allocated bandwidth (uplink bandwidth) used to transfer the task to the remote cloud. With our 

proposed attribute reduction approach, the transmission time is reduced since the data size is reduced.  The data transmission 

time (𝑇𝑓)for the original task data size and the proposed data transmission time (𝑇𝑝𝑓) are calculated and compared. 

The objective function aims at reducing the energy consumption of mobile devices by minimizing the number of deployed tasks. 

To determine when to deploy the task on mobile or offload the task for cloud processing, the following objective function 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑡𝑎𝑠𝑘𝑖)is considered;  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑡𝑎𝑠𝑘𝑖) =  𝑚𝑖𝑛(𝐸𝑖)          (12) 
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where 𝐸𝑖 is the energy consumed by a mobile device in processing 𝑡𝑎𝑠𝑘𝑖 . To achieve this objective, the algorithm estimate and 

compares the energy consumption of the task according to Equations (8) and (9) to decide whether to deploy the task at the mobile 

or cloud layer. If the energy consumption will be smaller at the cloud, the algorithm will schedule the task for cloud processing, or 

else it will be processed on the mobile. 

The algorithm summarizing the mobile cloud computing offloading based on the attribute reduction technique is presented in 

Algorithm (1).  

 

Algorithm 1: Energy Efficient Canonical Polyadic Decomposition (EECPD) Task Scheduling Algorithm 

The algorithm generates an input task and checks whether the input task can be processed on the mobile or should be sent to the 

cloud. It does the checking by estimating the processing time on the mobile considering the available processing capability of the 

mobile device. The algorithm uses the estimated processing time to estimate the energy consumption of the task at both mobile and 

in the cloud. It compares the estimated energy consumption according to Equations (8) and (9) to decide whether to process the task 

at mobile or cloud. If there is a need to move the task to the cloud, the algorithm will perform attribute reduction based on the 

proposed CPD algorithm according to Equation (1), and then moves the output of the data reduction process to the cloud following 

the objective function as presented in Equation (12). The data reduction ratio is calculated according to Equation (4). The time taken 

to offload the task is calculated according to Equations (5) and (7) together with the energy consumed at the mobile layer according 

to Equations (8) and (9).  

The result of the proposed data reduction is compared with the base paper’s data reduction, while the number of deployed tasks for 

the proposed algorithm is also compared with the number of deployed tasks in the base paper. The energy consumption of the 

proposed algorithm is compared according to Equations (10) and (11) which show that the proposed algorithm saves energy for 

mobile devices than the existing algorithm. The experimental settings for the proposed algorithm are presented in the next section.  
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5. EXPERIMENTAL SETTINGS 

This section discusses the experimental settings for the evaluation of the proposed computational offloading to solve the problem 

of energy at the mobile device level through the CPD data reduction approach. CPD data reduction utilizes the number of rank_1 

(unique number of column vectors) to transform the input data (images and videos) into canonical form. The proposed approach 

increases the number of offloaded tasks from the mobile layer to reduce the busy time of the mobile devices during task 

offloading. There are two environments for the simulation. First is the implementation of CPD-based data reduction, which 

reduces the input data size. This was implemented in MatLab 2019a with Intel Core i7. The open-source Kaggle cat and dog 

dataset which contains 25,000 images of cats and dogs were used. It is an open-source dataset. The images were preprocessed 

and represented as ℝ270×180×3 for every image in the dataset. The ratio of the data reduction is calculated and compared with the 

benchmark result.  

Table 1 illustrates the MatLab experimental parameters.  

Table 1 Experimental parameters for the CPD Data Reduction. 

Parameter  Description  Value  

Image height (h) The height of the image (pixels)  270 

Image width (w) The width of the image (pixels) 180 

Colour channel (c ) RGB 3 

R (number of Rank_1)  R rank-1  {1 to 64} 

Data size (Xs) Input image data size (pixels) Calculated 

Reduced data size (Xps) Output image data size (pixels) Calculated 

 

The second part of the experiment is the offloading process in the scheduling task which was implemented using Python 2.7 

together with Networkx. The data reduction ratio was used in the simulation. The edge devices’ capability was set to be 290 

Gflops each and edge devices in the network was set to be between 20 and 90 devices according to NVIDIA Tegra K1. The 

uplink bandwidth of the individual edge devices were uniformly distributed between 10 to 1000 Mb/s. The tasks’ latency is 0.2s 

each.  

We first simulated the task without a data reduction ratio and measured the number of deployed tasks (Equation 13) on the 

mobile layer and the energy consumed. Secondly, we simulated with data reduction ratio and compared both results with the 

online scheduling algorithm and LBF algorithm of the existing study [11]. The results are presented in the next section. 

6. PERFORMANCE EVALUATION 

In this section, we present the improvement in the performance gained by our proposed attribute reduction for scheduling in a 

mobile edge computing environment. First, we compared our proposed data reduction ratio according to [11]. The results show 

that our proposed method reduces the data size more than the CNN layer reduction approach proposed by  [11]. Our proposed 

algorithm reduces every offloadable task’s data to a reasonable percentage of its original size before offloading, thereby reducing 

drastically the added transmission delay as a result of the task offloading. Since the processing capacity in the cloud is higher 

than that of the mobile devices, and the transmission delay is highly minimized. Furthermore, the response time, delay, and 

energy consumption are minimized.  
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6.1 Data reduction ratio 

In this subsection, the data reduction ratio of the proposed algorithm is discussed. Table 2 and Figure 2 shows the values and 

graph of the first five data reduction ratio achieved by the first five (5) rank_1 values.  

Table 2: CPD Data Reduction Ratio 

 

The data reduction ratio increases linearly with the number of rank_1 values used for the data decomposition. From table 2, it is 

shown that 2, and 4 numbers of rank_1, produce a data reduction ratio of 0.006213992 and 0.012427984 which represents 0.62% 

and 1.24% of the original task size respectively.  

 

Fig. 2 CPD data reduction ratio 

We compared the proposed attribute reduction of the canonical Polyadic decomposition method with the existing attribute 

reduction of CNN convolutions. Table 3 and Figure 3 present the comparison of data reduction of [11] with the data reduction of 

the proposed method. From Figure 3, the CNN data reduction ratio reduces as the CPD data reduction ratio increases. For instance, 

R H W C 
 

Input Data Size 

Output  

Data size Reduction Ratio 

1 270 180 3 
 

145800 453 0.003106996 

2 270 180 3 
 

145800 906 0.006213992 

3 270 180 3 
 

145800 1359 0.009320988 

4 270 180 3 
 

145800 1812 0.012427984 

5 270 180 3 
 

145800 2265 0.015534979 
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at convolution one (1), the CNN data reduction produced 0.245390947 reduction ratio while at Rank_1 one (1) the CPD data 

reduction ratio is 0.003106996.  But at convolution 4 and Rank_1 four (4), their data reduction ratios are 0.002932099 and 

0.012427984 respectively.  

 The results show that the reduction ratio of the CPD base approach reduces with an increase in the value of rank_1 while the 

reduction ratio of CNN based approach increases with the number of convolutions. Since mobile devices are limited in 

processing capability, it is not suitable to implement several CNN convolutional layers on mobile devices considering the 

computational complexity of each CNN layer. Therefore, the CPD approach is better in terms of the attribute reduction to be 

applied at the mobile device layer to minimize energy consumption and improve the quality of service in IoT application since it 

applies all the data reduction at the mobile layer.  

 

 

Fig. 3 CNN and CPD Data Reduction Ratio Compared 
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Table 3 CNN and CPD data reduction Ratio compared  

CNN convolutions/CPD 

Rank_1 CNN Data Reduction Ratio CPD Data Reduction Ratio 

1 
0.245390947 0.003106996 

2 
0.059074074 0.006213992 

3 
0.01382716 0.009320988 

4 
0.002932099 0.012427984 

5 
0.000534979 0.015534979 

 

 

 

 

6.2 Number of the deployed task at the mobile layer 

The number of deployed tasks is important in this research since the amount of energy consumed by the mobile device is 

determined by the duration of usage. Reducing the number of the deployed task means offloading more of the tasks to the remote 

server. This will reduce device usage and therefore, reduce energy consumption. In the simulation, the input tasks simulated are 

200, 400, 600, 800, and 1000 tasks as shown in Table 4. The number of tasks that were deployed at the mobile layer is recorded. 

These deployed tasks are those tasks that couldn’t be offloaded to the remote server. The objective of the proposed algorithm  is 

to reduce the number of deployed tasks at the mobile layer because of the mobile device’s limited battery life, processing 

capacity, and storage.  

 

Table 4 Number of deployed tasks at the Mobile devices 

Input 

Tasks 

(Number) 

Number of Deployed Tasks 

LBF Online Algorithm Proposed Algorithm 

200 200 120 20 

400 380 270 45 

600 460 400 66 

800 510 530 88 

1000 560 660 110 

 

Figure 4 and Table 4 present the values and graph of the comparison of the number of deployed tasks by the proposed algorithm and 

the LBF and Online algorithm of the existing work. From Figure 4, the proposed algorithm reduces the number of deployed tasks 

more than the existing algorithms. For instance, when the input tasks are 400, the LBF deployed 380 tasks at the mobile level and 

the Online algorithm deployed 270 whereas the proposed EECPD algorithm deployed only 45 tasks representing 95%, 67.5%, and 
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11.25% of the input tasks respectively. Likewise, when the input tasks are 1000, the LBF deployed 560 tasks and the online 

algorithm deployed 660 tasks while EECPD deployed 110 tasks representing 56%, 66%, and 11% of the input tasks respectively.  

 

Fig. 4 Number of Deployed Tasks at the Mobile Layer 

 

6.3 Energy Consumption at the mobile layer 

This objective aims to minimize the mobile devices energy consumption in MEC. This is achieved by introducing rank_1 based 

canonical Polyadic decomposition at the mobile device level to reduce the input task data size. This enables the network to offload 

more tasks to the remote server since; energy,   bandwidth, processing power, and storage are always the problems of the mobile 

devices. The task scheduling simulation using the EECPD algorithm is implemented with the input tasks of 200, 400, 600, 800, and 

1000. The energy consumed at the mobile device level was measured. 
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Fig. 5 Energy Consumption at the Mobile devices 

Table 5 Energy Consumed by the deployed Tasks at Mobile 

Number 

of input 

tasks 

Energy Consumption by the Deployed Tasks 

All Input (mJ) LBF (mJ) 

Online  

Algorithm 

(mJ) Proposed Algorithm (mJ) 

200 
300 300 180 30 

400 
680 646 459 76.5 

600 
1140 874 760 125.4 

800 
1600 1020 1060 176 

1000 
2200 1232 1452 242 

 

Figure 5 and Table 5 present the values and graphical representation of the energy consumed by the proposed algorithm and the 

existing algorithms. From Figure 5, it is clear that the proposed algorithms reduced the energy consumption of mobile devices 

more than the existing algorithms. For instance, when the simulated input tasks are 200, the energy consumption for deploying 
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all input tasks on the mobile level is 300mJ, the LBF algorithm consumed 300mJ, the online algorithm consumed 180mJ, and the 

proposed EECPD consumed 30mJ representing 83.33% improvement from the online algorithm. Furthermore, when the number 

of input tasks is 1000, the energy consumed when all tasks are deployed, is 2200mJ. LBF algorithm consumed 1232mJ, and 

online consumed 1452mJ, while the proposed algorithm consumed 242mJ representing 83.33% energy enhancement for the 

proposed algorithm.  

 

7. CONCLUSION 

This research improved the energy usage of mobile devices in MEC. This was achieved by reducing the task data size before 

offloading the tasks to the cloud. This data reduction is achieved through the novel idea of rank_1 based CPD approach. The 

reduction ratio is used to simulate task processing in MEC and the data reduction ratio, number of deployed tasks, and energy 

consumption at the mobile level are measured and compared with LBF and online algorithms of the existing work. Experimental 

results proved the superiority of the proposed reduction approach in terms of data ratio, meaning it is capable of reducing the 

data size better than the existing algorithm. In terms of the number of deployed tasks, the proposed method’s results also 

performed better. And lastly, the results of the energy consumption of the proposed algorithm are also better than the existing 

work by an average of 83.33% which proves that the proposed algorithm is better for energy efficiency for IoT applications in 

mobile edge computing.  
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