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ABSTRACT 

This paper presents the development of a recursive deep learning framework utilizing natural 

language processing and computer vision techniques for optimizing oil drilling operations. 

Following the CRISP-DM methodology, the objectives include extracting both structured and 

unstructured data from various oilfield drilling report documents for sentiment analysis, 

training models capable of autonomously understanding hidden information in text/images to 

determine performance accuracy, leveraging daily drilling report analysis to enhance model 

accuracy and mitigate non-productive time risks, thus improving drilling operation efficiency, 

and creating a user-friendly interface for seamless interaction with the model. The results and 

discussion encompass predicted values, comparison between actual and predicted values, as 

well as scattered and line plots visualizing the relationship between actual and predicted 

values.  

Keywords: Recursive Deep Learning, Natural Language Processing, Computer Vision, Oil 

Drilling, Sentiment Analysis, CRISP-DM, Model Training, Efficiency Optimization.  
  

INTRODUCTION  

Human life basically consists of emotions and opinions. Emotions and opinions manage 

how humans communicate with each other and how they motivate their actions. Emotions and 

opinions play a role in nearly all human actions and can influence the way humans think, what 

they do, and how they act. In the past few years, a great attention has been received by web 

documents as a new source of individual opinions and experience. This situation is producing 

increasing interest in methods for automatically extracting and analyzing individual opinion 

from web documents such as customer reviews, weblogs and comments on news. This increase 

was due to the easy accessibility of documents on the web, as well as the fact that all these 

were already machine-readable on gaining (Cambria, 2017).   

At the same time, Machine Learning methods in Natural Language Processing (NLP) 

and Information Retrieval have considerably increased development of practical methods, 

making it an interesting area of research. Recently, many researchers have focused on this area 

by trying to fetch opinion information and analyze it automatically with computers (Sohangir, 

2018). This is because there are large amounts of information created by users on the Internet, 

including product reviews, movie reviews, forum entries, blog and so on. How to analyze and 

summarize the opinions expressed in these documents is a very interesting domain for 

researchers. Natural language processing (NLP) is a theory motivated range of computational 

techniques for the automatic analysis and representation of human language. NLP research has 

evolved from the era of punch cards and batch processing, in which the analysis of a sentence 

could take up to 7 minutes, to the era of Google, in which millions of WebPages can be 

processed in less than a second (Cambria, 2014). NLP enables computers to perform a wide 

range of natural language related tasks at all levels, ranging from parsing and part-of-speech 

(POS) tagging, to machine translation and dialogue systems. Deep learning architectures and 

algorithms have already made impressive advances in fields such as computer vision and 

pattern recognition. Going by this trend, NLP research in recent time is now increasingly 

focusing on the use of new deep learning methods. For decades, machine learning approaches 

targeting NLP problems have been based on shallow models like support vector machines 

(SVM) and logistic regression (LR) trained on very high dimensional and sparse features. In 
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the last few years, neural networks based on dense vector representations have been producing 

superior results on various NLP tasks.  

This trend is sparked by the success of word embedding (Mikolov, Karafi, Burget, 

Cernock, and Khudanpur, 2010) and deep learning methods (Socher, Perelygin, Wu, and 

Chuang, 2013). Deep learning enables multi-level automatic feature representation learning. In 

contrast, traditional machine learning based NLP systems liaise heavily on hand-crafted 

features which is time consuming and often incomplete.  

Integrating computer vision and natural language processing is a novel interdisciplinary 

field that has received a lot of attention recently. In human perception, visual information is the 

dominant modality for acquiring knowledge of the world; about 30% of the human brain is 

dedicated to visual processing. The extent to which language is directly involved in the visual 

process is still a matter of debate. However, in the attempt to achieve artificial intelligence, 

making use of certain aspects of language provides interpretability and enables productive 

human-machine interaction.   

Computer vision (CV) is a field of artificial intelligence (AI) that enables computers 

and systems to derive meaningful information from digital images, videos and other visual 

inputs and take actions or make recommendations based on derived information. Computer 

vision leverages on Artificial Intelligence (AI) to enables computers to think, to see, observe 

and understand. Computer vision works much the same as human vision, human sight has the 

advantage of lifetimes of context to train how to tell objects apart, how far away they are, 

whether they are moving and whether there is something wrong in an image.  

Computer vision on the other hand trains machines to perform these functions, but in 

much less time with cameras, data and algorithms rather than retinas, optic nerves and a visual 

cortex. Because a system trained to inspect products or watch a production asset can analyze 

thousands of products or processes a minute, noticing imperceptible defects or issues, it can 

quickly surpass human capabilities.  

Computer Vision (CV) tasks can be summarized by the concept of 3Rs (Jonathan and 

Jitendra, 2015), which are reconstruction, recognition, and reorganization (3R). 

Reconstruction involves estimating the three-dimensional (3D) scene that gave rise to a 

particular visual image. It can be accomplished using a variety of processes incorporating 

information from multiple views, shading, texture, or direct depth sensors. Reconstruction 

process results in a 3D model, such as point clouds or depth images. Some examples for 

reconstruction tasks are Structure from Motion, scene reconstruction, and shape from shading. 

Recognition involves both 2D problems (like handwritten recognition, face recognition, scene 

recognition, or object recognition), and 3D problems (like 3D object recognition from point 

clouds which assists in robotics manipulation). Recognition results in assigning labels to 

objects in the image.  

Reorganization involves bottom-up vision segmentation of the raw pixels into groups 

that represent the structure of the image. Reorganization tasks range from lowlevel vision like 

edge, contour, and corner detection, intrinsic images, and texture segmentation to high-level 

tasks like semantic segmentation (Joao and Cristian, 2010), which has an overlapping 

contribution to recognition tasks. A scene can be segmented based on low-level vision (David, 

Charless, and Jitendra, 2004) or high-level information like shadow segmentation (Aleksandrs, 

Cornelia, and Yiannis, 2014) that utilizes class information.   
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Figure 1: The 3R in computer vision (Jonathan and Jitendra, 2015)  

There is always meaning lost when translating between one language and another, 

hence there is need to bridge the gap. When “translating” between the low level pixels or 

contours of an image and a high level description in word labels or sentences, there is a wide 

chasm to be crossed. Bridging the Semantic Gap (Zhao and William, 2002) means building a 

bridge from visual data to language data like words or phrases. An example could include 

labeling an image patch that contains an object with a word is object recognition. Labeling a 

background in an image is scene recognition. Assigning words for pixel grouping is semantic 

segmentation (Jeffrey, Socher, and Christopher, 2014)(Carreira and Sminchisescu, 2010). If we 

know how the words are related to each other, then it can give a clue for visual processing to 

better disambiguate different visual constructs.  

Bernard Vauquois examined the machine translation approaches to represent it in the 

form of a triangle. The Vauquois triangle visualizes and describes the classical approaches to 

machine translation, showing the evolution of those approaches.  

 
Figure 2: A rendition of the Vauquois triangle, illustrating the various approaches to the design 

of machine translation systems (Boitet, 2022)  

 

OBJECTIVES 

1. To extract both structured and unstructured data from free text in different oilfield drilling 

report documents suitable for sentiment analysis.             

2. To train models that is capable of independently understanding hidden information in 

text/images and systematically determines the performance accuracy of the trained models.  

3. To use analysis from oil daily drilling report to increase the accuracy of the model and 

mitigate the risks of non-productive time in drilling events thereby increasing the 

efficiency of the drilling operation.  

4. To develop an interface that will enable end users interact easily with the model.   
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LITERATUIRE REVIEW 

There has been great progress in delivering technologies in natural language processing 

(NLP) such as extracting information from big unstructured data on the web, sentiment analysis 

in social networks or grammatical analysis for essay grading. One of the goals of NLP is the 

development of general and scalable algorithms that can jointly solve these tasks and learn the 

necessary intermediate representations of the linguistic units involved. However, standard 

approaches towards this goal have two main limitations which includes.  

1. Simplifying Language Assumptions: In NLP and machine learning, we often develop an 

algorithm and then force the data into a format that is compatible with this algorithm. For 

instance, a common first step in text classification or clustering is to ignore word order and 

grammatical structure and represent texts in terms of unordered lists of words that is called 

bag of words; which leads to obvious problems when trying to understand a sentence.  

2. Feature Representations: While a lot of time is spent on models and inference, a well-

known secret is that the performance of most learning systems depends crucially on the 

feature representations of the input. For instance, instead of relying only on word counts to 

classify a text, state of the art systems uses part-of speech tags, special labels for each 

location, person or organization (so called named entities); parse tree features or the 

relationship of words in a large taxonomy such as WordNet. Each of these features has 

taken a long time to develop and integrating them for each new task slows down both the 

development and runtime of the final algorithm (Bowman, Potts and manning, 2014).  

These two main issues can be overcome by providing effective and general 

representations for sentences without assuming word order independence as well as providing 

a most unusual performance with no or little manually designed features. These were achieved 

by combining ideas from the fields of natural language processing and deep learning. Deep 

learning however, is a sub field of machine learning which comfortably handles the problem 

of feature representation by automatically learning feature representations from raw input 

which can then be readily used for prediction tasks.  

There has been great success using deep learning techniques in image classification 

(Krizhevsky, Sutskever, and Hinton, 2012) (Krizhevsky et al., 2012) and speech recognition 

(Hinton et al., 2012). However, an important aspect of natural language processing and 

computer vision that has not been accounted for in deep learning is the pervasiveness of 

recursive or hierarchical structure. Therefore, this thesis describes new deep models that extend 

the ideas of deep learning to structured inputs and outputs, thereby providing a solution to the 

problem of simplifying language assumptions. In other words, while the methods implemented 

here are based on deep learning they extend general deep learning ideas beyond classifying 

fixed sized inputs and introduce recursion and computing representations for grammatical 

language structures.  

The model used in this thesis is Recursive Deep Learning which is a variation and 

extension of unsupervised and supervised recursive neural networks. Recursive neural 

networks parse natural language which enables them to find the grammatical structure of a 

sentence and align the neural network architecture accordingly. Also, the recursion comes 

applying the same neural network at every node of the grammatical structure. Recursive deep 

models also address the fundamental issue of learning feature vector representations for 

variable sized inputs without ignoring structure or word order. These structures when 

discovered, helps to characterize the units of a sentence or image and how they compose to 

form a meaningful whole. The models can also learn compositional semantics often purely 

from training data without a manual description of features that are important for a prediction 

task (Frome, Corrado, and Shlens, 2013).  

In recent time, most natural language processing activities were carried out using 

shallow machine learning approach; which is slow and most often yield very low performance. 
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Hence, the needs to introduce a deep learning approach. Majority of machine learning methods 

work well because of human-designed representations and inputs features. When machine 

learning is applied only to the input features, it only becomes merely about optimizing weights 

to make the best final prediction. Deep learning is about putting back together representation 

learning with machine learning. It attempts to jointly learn good features, across multiple levels 

of increasing complexity and abstraction, and the final prediction (Goldberg, 2016).  

Natural language processing (NLP) has long been viewed as one aspect of artificial 

intelligence (AI), since understanding and generating natural language are high-level 

indications of intelligence; deep learning is an effective AI tool as well as a bridge between the 

massive amounts of data and AI (Goldberg, 2016). Deep learning refers to applying deep neural 

networks to massive amounts of data to learn a procedure aimed at handling a task. The task 

can range from simple classification to complex reasoning. In other words, deep learning is a 

set of mechanisms ideally capable of deriving an optimum solution to any problem given a 

sufficiently extensive and relevant input dataset. Summarily, deep learning is detecting and 

analyzing important structures/features in the data aimed at formulating a solution to a given 

problem.  

 

Deep Learning Architectures  

Numerous deep learning architectures have been developed in different research areas, 

for example, in NLP applications, employing recurrent neural networks (RNNs) (Lipton, 

Berkowitz, and Elkan, 2015), convolutional neural networks (CNNs) (Kim, 2014), and 

recursive neural networks (Socher, Lin, and Manning, 2011.)  

Multi-Layer Perceptron: A multilayer perceptron (MLP) has at least three layers (input, 

hidden, and output layers). A layer is simply a collection of neurons operating to transform 

information from the previous layer to the next layer. In the MLP architecture, the neurons in 

a layer do not communicate with each other.  MLP employs nonlinear activation functions. 

Every node in a layer connects to all nodes in the next layer, creating a fully connected network. 

Figure 2. below shows the MLPs, which is the simplest type of Feed-Forward Neural Networks 

(FNNs). FNNs represent a general category of neural networks in which the connections 

between the nodes do not create any cycle, i.e. in a FNN there is no cycle of information flow 

(Li, Sun, and Han, 2020).  

 
Figure 3:  Multi-layer perceptron architecture (Abdi, Hasan, Shamsuddin, Idris, and Piran, 

2021)  

Convolutional Neural Networks  

Convolutional neural networks (CNNs), whose architecture is inspired by the human 

visual cortex, are a subclass of feed-forward neural networks. CNNs are named after the 
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underlying mathematical operation, convolution, which yields a measure of the interoperability 

of its input functions. Convolutional neural networks are usually employed in situations where 

data is or needs to be represented with a 2D or 3D data map. In the data map representation, 

the proximity of data points usually corresponds to their information correlation.  

In convolutional neural networks where the input is an image, the data map indicates 

that image pixels are highly correlated to their neighboring pixels. Consequently, the 

convolutional layers have 3 dimensions which are width, height, and depth. Hence, the reason 

why majority of researches dedicated to CNN are conducted in the Computer Vision field 

(Krizhevsky, Sutskever, and Hinton, 2012.)  

A CNN takes an image represented as an array of numeric values. After performing 

specific mathematical operations, it represents the image in a new output space. This operation 

is also called feature extraction and helps to capture and represent key image content. The 

extracted features can be used for further analysis, for different tasks. One example is image 

classification, which aims to categorize images according to some predefined classes. Other 

examples include determining which objects are present in an image and where they are 

located.  

In the case of utilizing CNNs for NLP, the inputs are sentences or documents 

represented as matrices. Each row of the matrix is associated with a language element such as 

a word or a character. The majorities of CNN architectures learn word or sentence 

representations in their training phase. A variety of CNN architectures were used in various 

classification tasks such as Sentiment Analysis and Topic Categorization (Kim, 2014). CNNs 

were employed for Relation Extraction and Relation Classification as well (Zeng, Liu, Lai, 

Zhou, and Zhao, 2014.).  

Recurrent Neural Network  

A recurrent neural network (RNN) is constructed by lining up a sequence of FNNs and 

feeding the output of each FNN as an input to the next one. Just as in FNNs, layers in an RNN 

can be categorized into input, hidden, and output layers. In discrete time frames, sequences of 

input vectors are fed as the input, one vector at a time. For example, after inputting each batch 

of vectors, conducting some operations and updating the network weights, the next input batch 

will be fed to the network. Figure 2. below shows a recurrent neural network where at each 

time step predictions are made and parameters of the current hidden layer are used as input to 

the next time step (Tang, Qin, and Liu, 2015).  

  
Figure 4: Recurrent Neural Networks (RNN) (Tang, Qin, & Liu, 2015)  

Hidden layers in recurrent neural networks can carry information from the past; this 

feature makes it possible for hidden layers in recurrent neural networks to be classified as a 

memory. This characteristic makes them specifically useful for applications that deal with a 

sequence of inputs such as language modeling (Mikolov, Karafia, Burget, ernocky, and 

Khudanpur, 2010), i.e. representing language in a way that the machine understands. Long 

Short-Term Memory Network (LSTM (Rao, Huang, Feng, and Cong, 2018) is one of the most 

widely used classes of RNNs. LSTMs try to capture even long-time dependencies between 
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inputs from different time steps, modern Machine Translation and Speech Recognition often 

rely on long short-term memory (LSTMs).  

 

Auto-encoders  

Auto-encoders implement unsupervised methods in deep learning and they are widely 

used in dimensionality reduction (Bengio, Ducharme, Vincent and Jauvin, 2003) or NLP 

applications, which consist of sequence to sequence modeling (Mikolov, Karafi, Burget, 

Cernock, and Khudanpur, 2010). Since auto-encoders are unsupervised, there is no label 

corresponding to each input. Rather, they aim to learn a code representation for each input. The 

encoder is like a feed-forward neural network in which the input gets encoded into a vector 

(code). The decoder operates similarly to the encoder, but in reverse, i.e. constructing an output 

based on the encoded input. In data compression applications, there is need for the created 

output to be as close as possible to the original input. Auto-encoders are loss, this is to say, the 

output is an approximate reconstruction of the input. Fig. 2.3 illustrates the schematic of an 

Auto-encoder.  

 
Figure 5: Schematic of an Auto-encoder (Mikolov, Karafia, Burget, and Ernocky, 2010.)  

  

Generative Adversarial Networks  

Goodfellow (Goodfellow, Pouget-Abadie, Mirza, Xu, and Warde-Farley, 2014) 

introduced Generative Adversarial Networks (GANs). Fig. 6 below shows a GAN as a 

combination of two neural networks, a discriminator and a generator. The whole network is 

trained in an iterative process. The generator network generates a fake sample, then the 

discriminator network tries to determine whether this sample (ex. an input image) is real or 

fake, i.e. whether it came from the real training data (data used for building the model) or not. 

The goal of the generator is to fool the discriminator in a way that the discriminator believes 

the artificial (i.e. generated) samples synthesized by the generator are real. This iterative 

process continues until the generator produces samples that are indistinguishable by the 

discriminator. In other words, the probability of classifying a sample as fake or real becomes 

like flipping a fair coin for the discriminator.  

The goal of the generative model is to capture the distribution of real data while the 

discriminator tries to identify the fake data. One of the interesting features of GANs (regarding 

being generative) is that once the training phase is finished, there is no need for the 

discrimination network, hence, the generation network can be solely worked with; this is to 

say, having access to the trained generative model is sufficient.  

Different forms of GANs has been introduced, e.g. Sim GAN (Shrivastava, Pfister, 

Tuzel, Susskind, and Wang, 2017). In one of the most elegant GAN implementations (Karras, 

Aila, Laine, and Lehtinen, 2017), entirely artificial, yet almost perfect, celebrity faces are 

generated; the pictures are not real, but fake photos produced by the network. GAN‟s has since 

received significant attention in various applications and have generated astonishing result 
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(Tavaf, Torfi, Ugurbil, and Van de Moortele, 2021). In the NLP domain, GANs often are used 

for text generation (Yu, Zhang, Wang, and Yu, 2017).  

  
Figure 6: A Generative Adversarial Network (Radford, Metz, and Chintala, 2015)  

  

Recursive Neural Networks  

While recurrent neural networks represent a natural way to model sequences, languages 

however, exhibits a natural recursive structure, where words and subphrases combine into 

phrases in a hierarchical manner. This structure can be represented by a constituency parsing 

tree. Hence, tree-structured models have been used to better make use of such syntactic 

interpretations of sentence structure (Cheng, Yu, Feris, Kumar, and Choudhary, 2015.). 

Specifically, in a recursive neural network, the representation of each non-terminal node in a 

parsing tree is determined by the representations of all its children. 
 

Oil drilling operation domain knowledge 

Drilling process  

Basically, the drilling process can be described as follows (Nybo, Ph.D. thesis, NTNU, 

2009). A rotating pipe (or string), extends from the rig to the bottom of the well, ending in a 

bottom hole assembly (BHA) that includes the drill bit. The drill bit is the head of the whole 

assembly, where resides the actual drilling mechanism. The pipe is composed by several 

elements assembled one by one from the top, as the hole gets deeper. A stand, is composed by 

two or three segments of drill pipe joint together and constitutes a typical reference unit for the 

drilling process (three-joint stands are also called trebles or triples). As the drilling process 

proceeds, new stands are mounted one on top of the other to augment the drill pipe length. 

Conversely, in tripping the stands are disconnected and stocked as they are extracted from the 

well. A stand can be made of drill collars as well (drill collars are heavier pipes used to provide 

weight on bit for drilling).  

The gravity acting on the drill pipe and in particular on the collars provides the 

downward force necessary to the bit to break the rock. The driller lowers the drill string on the 

bottom of the wellbore, and then controls the weight applied to the bit. The weight on bit, 

technical name of the weight that the operator let to be applied to the bit, is always smaller than 

the actual weight of the string. We could say that an operator never lays down the string freely. 

The drill bit crushes the rock into cuttings, which are removed from the bottom and 

mechanically transported up towards the rig by way of a special drilling mud. The latter is 

pumped down the pipe and returns to the rig passing through the annulus, i.e. the space between 

the pipe and the wall of the borehole. The wall of the well is periodically coated with a 

protective casing and cemented. For this and other tasks (e.g., substitution of the drill bit), the 

whole pipe must be extracted from the hole and reinserted afterwards, an operation called 

tripping.  
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Oil rig description and nomenclature  

The rig includes various subsystems: the hoist and rotation system, the power 

generation system, the mud circulation system, and the well control system. The hoist and 

rotation system have two main functions. First of all, it is used to hoist or lower the drilling 

equipment from the well. In addition, it applies rotation to the drill string and the bit, as required 

in the drilling process. Its main elements, are the derrick (or mast) with its substructure, the 

crown block at the top of the rig, the traveling block, the top drive, the rotary table, the draw 

works, the drill line, and the dead line anchor.  

The traveling block is the set of sheaves that moves up and down in the derrick. The 

wire rope (drill line) threaded through them is \reeved" back to the stationary crown blocks 

located on the top of the derrick. This pulley system enables heavy loads (drill string, casing 

and liners) to be lifted out of or lowered into the wellbore. The top drive is a motor suspended 

from the derrick that is used to rotate the drill string during the drilling process.  

It replaces the traditional Kelly or rotary table, which is also used to apply rotation and 

to support the drilling assembly. The mud circulation system is required to prepare, store, and 

pump the drilling mud. The mud has various functions: carry the drilled cuttings from the hole 

bottom up to the rig level, cool down and lubricate the bit, hold the bore hole from falling 

down. The hole is stable when the hydrostatic pressure of the mud is greater than the pore 

pressure. Otherwise gas blows upwards (well owing/kick), and a blowout can occur. If the mud 

hydro- static pressure is too large it may cause fractures in the formation, with consequent mud 

losses. The mud can be water or oil base.  

The main function of the well control system is to prevent a blow-out of the well. The 

Blow Out Preventer (BOP) is a large valve that may provide a seal for the well bore. The BOP 

stack is an assembly of blow out preventers. The choke & kill manifold and lines are 

arrangements of pipes and special valves used to circulate the mud when the BOPs are closed 

to control the pressures encountered during a kick.  

  
Figure 7. Casing.  

The casing provides mechanical support and isolation to the well. Various casings with 

progressively smaller diameters may be used, starting from an initial hole with a diameter of 

70 cm down to 10 cm. The surface casing is run to install the well head and BOP system. It 

also has the function of isolating the shallow water. The intermediate casing is run to stabilize 

the bore hole and to isolate the levels with different gradient. The production casing is run to 

isolate the productive levels and to protect the completion devices. When the mud weight value 

becomes closer to the fracture gradient it is necessary to set a new casing. Each time a new 

casing is set up it is necessary to change the BHA. This is due to the smaller diameter of the 

hole that clearly needs a smaller bit.  



Journal of Xi’an Shiyou University, Natural Science Edition                                                                 ISSN: 1673-064X     
 

http://xisdxjxsu.asia                                    VOLUME 20 ISSUE 02 FEBRUARY 2024                                         998-1022 

The casing can break from the inside (burst) or collapse for large pressure differences 

between the inside and the outside. A burst can happen e.g. during kicks or blow outs, 

cementing jobs, a LOT (Leak out test) or a FIT (Formation Integrity test). It can collapse 

because of mud losses or during the cementing job (because of the cement slurry density). 

During the casing running it may also be subject to axial loads (tensile or compression stress). 

Tensile stresses may also occur during cementing (at bump plug) or because of thermal 

expansion.  

The casing operations may last from one day to several days, depending on the length 

of the casing. Cementing is mainly used to seal casings, but it may also be used to isolate the 

well or to perform a squeeze (cement is pumped in a fractured formation to prevent mud losses). 

The cementing job consists in pumping the cement slurry in the annulus between open hole 

and casing. The slurry is separated from the mud by two plugs. The mud pushes the cement 

downwards. At some point the lower plug exits the casing and the slur outside the casing 

recirculating upwards. The mud is stopped when the upper plug reaches the bottom. Then, the 

cement is left to consolidate (Wait on Cement, WOC). When the drilling resumes, the cement 

at the bottom is drilled and removed.  

Well completion consists in running down hole the devices required to produce the 

formation fluid (hydrocarbon) to the surface in a controlled way. The completion design 

includes also safety devices to shut the well in case the well head is damaged and the well 

integrity is compromised. In our study we consider just data coming from the drilling part of 

the Well creation, from the initial phase to the set-up of the last casing or in some cases until 

the total break, i.e. the moment when the drilling assembly is left in the bottom of the hole due 

to the impossibility to unlock it. In this situation the loss is dramatic and it could be necessary 

to drill a completely new hole.  

  

Characterization of typical anomalies 

Types of anomalies  

1. Well problems: all borehole and cased hole problems generated by the well with 

exclusion of the equipment failures or malfunctions. These include: circulation losses, sticking, 

fluid (kick, blowout), other geological problems (caving, gumbo, tight hole, hole geometry, salt 

formations, hole), cased hole problems, etc.  

2. Rig failures: all drilling rig contractor equipment failures or malfunctions with 

exclusion of the down hole equipment. The following components are involved: draw-works1, 

mud pumps, power generation system, top drive system, surface b.o.p., subsea equipment, 

mooring etc.  

3. Down hole equipment failures: failures or malfunctions of every equipment run in hole. 

The following components are involved: BHA, drill string, casing/liner, completion/test string, 

wire line equipment, coiled tubing, etc.  

4. Surface equipment failures: failures or malfunctions of every equipment used in surface 

or at sea bed with exclusion of the drilling contractor equipment. The following components 

are involved: wellhead, company surface equipment, contractor surface equipment, etc.  

5. Waiting: time spent with no well operation in progress. This can be ascribed to weather, 

contractors, company, etc.  

  

Stuck pipe  

Sticking occurs when the drill string cannot be moved (rotated or reciprocated) along 

the axis of the wellbore. During drilling operations, a pipe is considered stuck if it cannot be 

freed from the hole without damaging the pipe, and without exceeding the drilling rig's 

maximum allowed hook load. Pipe sticking can be classified under two categories: differential 
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pressure pipe sticking and mechanical pipe sticking. There is a higher risk of sticking in high-

angle and horizontal wells.  

Drilling through depleted zones, where the pressure in the annulus exceeds that in the 

formation, might cause the drill string to be pulled against the wall and embedded in the alter 

cake deposited there. The internal cake pressure decreases at the point where the drill pipe 

contacts the alter cake, causing the pipe to be held against the wall by differential pressure. 

Notice that a relatively low differential pressure applied over a large working area can succeed 

to stick the pipe. In high-angle and horizontal wells, gravitational force contributes to extended 

contact between the drill string and the formation. Properly managing the lubricity of the 

drilling fluid and the quality of the alter cake across the permeable formation can help reduce 

occurrences of stuck pipe.  

Methods used to get the pipe free, in addition to pulling and torqueing the pipe, include 

(Andrew and Sridhar, 2003) lowering hydrostatic pressure in the wellbore (Chenevert, 

Bourgoyne, and Millhelm, 2020) placing a spotting fluid next to the stuck zone and applying 

shock force just above the stuck point by mechanical jarring, or all the above. The most 

common approach, however, to getting free is to place a spot3 of oil, oil base mud, or special 

spotting fluid.  

The limiting or prevention of motion of the drill string for other reasons is generally 

denoted mechanical sticking. Mechanical sticking can be caused by junk in the hole, wellbore 

geometry anomalies, cement, keyseats4 or a buildup of cuttings in the annulus.  

Mechanical causes for stuck pipe include key seating from poor hole-cleaning (the 

cuttings settle and eventually pack around the drill string), shale swelling, wellbore collapse, 

plastic-owing formation (i.e. salt), bridging.  

Early signals of a poor hole-cleaning conditions can be found in an erratic torque (the 

string is repeatedly getting stuck in the cuttings, wound up and spun free), an unexplained 

increase in the bottom hole pressure (which may be associated to a tight spot with packings 

causing restrictions further up the annulus), or an unexpected hook load (if the drill string rests 

on a tight packing the hook load is lower than anticipated) (Nybo, Ph.D. thesis, NTNU,, 2009).  

Preventing a stuck pipe can require close monitoring of early warning signs, such as 

increases in torque and drag, excessive cuttings loading, tight spots while tripping, loss of 

circulation while drilling. Depending on what the suspected cause of sticking is, it might be 

necessary to increase the drilling fluid density (to stabilize a swelling shale) or to decrease it 

(to protect the depleted zone and avoid differential sticking).  
  

Kick and blowout  

A kick is a flow of formation fluids into the wellbore during drilling, caused by the 

pressure in the wellbore being less than that of the formation fluids. This can happen because 

the mud weight is too low with respect to the drilled formation (underbalanced kick), so that 

the hydrostatic pressure exerted on the formation by the fluid column is insufficient to hold the 

formation fluid in the formation). An induced kick occurs if dynamic and transient fluid 

pressure effects, usually due to motion of the drill string or casing, effectively lower the 

pressure in the wellbore below that of the formation. A blowout is an uncontrolled flow of 

reservoir fluids into the wellbore, and sometimes to the surface. A blowout may consist of salt 

water, oil, gas or a mixture of these. Kicks occur both in drilling and in tripping out, and if not 

handled properly can develop into blowouts.  

Well control is the practice of preventing well flows and kicks and to maintain control 

of the well even in the event of such occurrences. The total pressure (e.g., mud hydrostatic 

pressure and casing pressure) at the hole bottom is maintained at a value slightly greater than 

the formation pressures to prevent further influxes of formation fluids into the wellbore 

(constant-bottom hole-pressure concept). Since the pressure is only slightly greater than the 

formation pressure, the possibility of inducing a fracture and an underground blowout is 
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minimized. In the event of a kick, first the well must be shut in, and then the kick fluid is 

pumped out of the well (kick-killing), possibly using mud with increased weight (kill mud). 

One concern regarding this operation is the initial amount of time required to increase the mud 

density, during which a sticking may occur. For this reason, some well control methods start 

pumping out fluid immediately after the shut-in. One or two complete fluid displacements may 

be required to complete the procedure, depending on the method adopted. Another issue that 

may occur is the raising of the surface pressures to alarming heights, e.g. because of gas-volume 

expansion near the surface. If the kick-imposed stresses are greater than the formation can 

withstand, an induced fracture occurs, creating the possibility of an underground blowout. The 

procedure that imposes the least down hole stress while maintaining constant pressures on the 

kicking zone is considered the most conducive to safe kick killing.  

  

Circulation losses  

A circulation loss is the uncontrolled flow of mud into a formation, sometimes referred 

to as a thief zone. This usually occurs when the hydrostatic head pressure of the column of 

drilling fluid exceeds the formation pressure. This loss of fluid may be loosely classified as 

seepage losses, partial or total losses, each of which is handled differently depending on the 

risk to the rig and personnel and the economics of the drilling uid and each possible solution. 

Circulation losses may be caused by formations that are inherently fractured, cavernous, or 

highly permeable, or by fracturing induced by the drilling process itself (e.g., because of 

excessive downhole pressures, improper annular hole cleaning, excessive mud weight, shutting 

in a well in high-pressure shallow gas, etc.). Losing mud into the oil or gas reservoir can 

drastically reduce (or eliminate) the operator's ability to produce the zone. If lost circulation 

zones are anticipated, preventive measures should be taken by treating the mud with loss of 

circulation materials (LCMs), and preventive tests such as the leaked test (LOT6) and 

formation integrity test (FIT7) should be performed to limit the possibility of loss of circulation. 

If a LOT/FIT fails, a cement squeeze8 should be carried out before drilling resumes to ensure 

that the wellbore is competent.  

In the case of severe lost circulations, the use of various plugs to seal the zone becomes 

mandatory. It is important to know the location of the lost circulation zone before setting a 

plug. Various types of plugs used throughout the industry include bentonite/diesel-oil squeeze, 

cement/bentonite/diesel oil squeeze, cement, barite. When a loss zone is encountered, the top 

priority is keeping the hole full so the hydrostatic pressure does not fall below formation 

pressure and allow a kick to occur. The hydrostatic pressure may be purposely reduced to stop 

the loss, as long as sufficient density is maintained to prevent well-control problems. Loss 

zones also pose a high risk of differential sticking. Rotating and reciprocating the drill string 

helps reduce this risk while an LCM treatment is prepared. If the location of the loss zone is 

known, it might be advisable to pull the drill string to a location above the affected area.  

Oilfield Domain Knowledge 

Daily Drilling Report  

A daily drilling report is an industry-standard report of drilling activities on the drilling 

rig. It is a 24-hour summary report of the prior day’s operations to keep the interested parties 

aware of the operations and issues on the rig (Bob, 2020). It is used for a variety of needs such 

as logging drilling data or tracking drilling performance dependent on the operator (IADC, 

2018). The format of the daily drilling report has been paper form for decades resulting in 

historical daily drilling reports being scanned in PDF format. Daily drilling reports in recent 

decades have evolved to be more digital as the industry tries to move towards the goal of smart 

reporting (WITSML, 2017). The current generation of the daily drilling report is now a 

combination of automatic inputs from sensor data and manually inputted comments about the 
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drilling activities. Daily drilling reports come in many different formats dependent on operation 

area, drilling type and company culture.  

Some common aspects of daily drilling report relevant to this thesis are listed below 

(Repository, 2019).  

1. Report Date: The daily drilling report is generated in a 24-hour period and hence this is 

useful identifying metadata.  

2. Well Name: The format of the well name is dependent on the company and can be either 

an internal name or a legal well name but is nonetheless useful identifying metadata.  

3. Header Summaries: The header of the report contains other useful summary information 

such as measured depth and true vertical depth which can be used as quality control 

parameters for the extracted measurements in the drilling report summary.  

4. Blowout Preventer: Some reports have a section to record tests on this safety device which 

is vital to monitor lead-ups to a catastrophic failure event called a blowout.  

5. Mud: Mud tables listing various properties of the mud in the drilling operation are useful 

as mud weight is an important calibration point and can be used to quality control the 

automated measurement extraction. Furthermore, fluid loss recorded in the mud tables may 

also be a measurement which is useful to validate drilling event such as losses.  

6. Time Breakdown Section: This is the key aspect of the daily drilling report for this project. 

This section constitutes around a quarter of the report but takes half the effort to generate 

as it is done manually (WITSML, 2017). It is usually in the form of a table with varying 

columns dependent on the operator. The target column is the operation comments which 

free text comments are written by the rig supervisor summarizing the drilling activities. 

The operation comments are the primary target to analyze using the implementation 

workflow to extract calibration points.  

 

METHODOLOGY 

A lot of work has been done in the field of natural language processing and computer 

vision, ranging from the use of shallow learning techniques to deep learning techniques. Deep 

learning techniques like recurrent neural network (RNN) and convolutional neural network 

(CNN) have been used in the past for natural language processing activities like sentiment 

analysis, part of speech tagging (POS), classification etc. and computer vision activities like 

image sensing, voice recognition, segmentation etc.   

Recurrent neural network (RNN) does natural language processing by using the 

principle in feed forward neural networks (FNNs), where the layers in an RNN can be 

categorized into input, hidden, and output layers. Then, in discrete time frames, sequences of 

input vectors are fed as the input, one vector at a time. In convolutional neural network, 

however, is employed in situations where data is or needs to be represented with a 2D or 3D 

data map where the proximity of data points usually corresponds to their information 

correlation. In a situation where the input in convolutional neural network is an image, the data 

map indicates that image pixels are highly correlated to their neighboring pixels. Consequently, 

the convolutional layers have 3 dimensions which are width, height, and depth. A major issue 

with the learning techniques above is that they all have long term dependencies.  

Deep learning-based methods learn low-dimensional, real valued vectors for word 

tokens, mostly from a large data corpus, successfully capturing syntactic and semantic aspects 

of text. For tasks where the inputs are larger text units, e.g. phrases, sentences or documents, a 

compositional model is first needed to aggregate tokens into a vector with fixed dimensionality 

that can be used for other NLP tasks. Both recurrent and recursive models suit this purpose, 

however, recursive model will be used in this thesis because it considers tokens sequentially, 

and it combine neighbors based on the recursive structure of parse trees, starting from the leaves 

and proceeding recursively in a bottom-up fashion until the root of the parse tree is reached; 
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these have the advantage of capturing long distance dependencies and also, powerful in 

learning hierarchical, tree-like structure.  

   

CRISP-DM methodology  

CRISP-DM (Cross Industry Standard Process for Data Mining (CRISP-DM) is the most 

popular framework for executing data science projects. It provides a natural description of a 

data science life cycle (the workflow in data-focused projects) (Huber and Seiger, 2016).  

However, this task-focused approach for executing projects fails to address team and 

communication issues. Thus, CRISP-DM should be combined with other team coordination 

frameworks. This methodology is made up of six basic phases, which include:  

1. Business understanding: The Business Understanding phase focuses on understanding the 

objectives and requirements of the project. While many teams hurry through this phase, 

establishing a strong business understanding is like building the foundation of a house – 

absolutely essential. It focuses mainly on determining business objectives, access 

situations, determine project goals and produce project plan  

2. Data understanding: Adding to the foundation of Business Understanding, the Data 

Understanding phase focuses on identifying, collecting, and analyzing data sets that can 

help the project. This phase also has four tasks: Collect initial data, describe data, explore 

data, and verify data quality.  

3. Data preparation: This phase, which is often referred to as “data munging”, prepares the 

final data set(s) for modeling. A common rule of thumb is that 50% to 80% of the project 

effort is in the data preparation phase. This phase has activities like selection of data, 

cleaning of data, construction of data, integration and formatting of data  

4. Modeling: Modeling is often regarded as data science’s most exciting work. In this phase, 

the team builds and assesses various models, often using several different modeling 

techniques. Although the CRISP-DM guide suggests to “iterate model building and 

assessment until it is strongly believing that the best model(s)” is found, in practice teams 

might iterating until they have a “good enough” model.  

This phase has four tasks:  

a. Select modeling techniques: Determine which algorithms to try (e.g. regression, neural net).  

b. Generate test design: Pending your modeling approach, you might need to split the data 

into training, test, and validation sets.  

c. Build model: As glamorous as this might sound, this might just be executing a few lines of 

code like “reg   Linear Regression (). fit (X, y)”.  

d. Assess model: Generally, multiple models are competing against each other, and the data 

scientist needs to interpret the model results based on domain knowledge, the pre-defined 

success criteria, and the test design.  

5. Evaluation: Whereas the Assess Model task of the Modeling phase focuses on technical 

model assessment, the Evaluation phase looks more broadly at which model best meets the 

business and what to do next. In this phase, result is evaluated, there is review of process 

and the next step is determined.  

6. Deployment: A model is not particularly useful unless the customer can access its results. 

So, deployment basically describes what it takes to actually use the results of the project. 

This can be as simple as sharing a report or as complex as implementing a live real-time 

predictive model. This final phase has four tasks, which include, planning deployment, 

Planning monitoring and maintenance, produce final report and review project.   
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Figure 11. CRISP- DM methodology (Wiemer & Schwarzenberger, 2017)  

  

Strengths and benefits of CRISP DM methodology  

1. Cyclical: CRISP-DM can support the iterative nature of data science (but how to actually 

do iterations is not defined)  

2. Adopt-able: CRISP-DM  can be  implemented without much training, organizational role 

changes, or controversy.  

3. Right Start: The initial focus on Business Understanding, an often-overlooked step, is 

helpful to align technical work with business needs and to steer data scientists away from 

jumping into a problem without properly understanding business objectives.  

4. Flexible: A loose CRISP-DM implementation can be flexible to provide many of the 

benefits of agile principles and practices. By accepting that a project starts with significant 

unknowns, the user can cycle through steps, each time gaining a deeper understanding of 

the data and the problem. The empirical knowledge learned from previous cycles can then 

feed into the following cycles.  

This paper will adopt the CRISP DM methodology for the development of the model 

because, the CRISP DM provides a natural description of a data science life cycle while the 

agile methods attempt to minimize risk by developing software in short time boxes called 

iterations; where each iteration is like a miniature software project of its own, and includes all 

of the tasks necessary to release the mini-increment of new functionality. It also provides the 

platform for inheritance, encapsulation and polymorphism which makes it most fit for the 

research work. 

 

RESULTS & DISCUSSION 

Understanding the interplay between the number of epochs and model accuracy is 

crucial in avoiding overfitting and ensuring the model effectively learns patterns in the data. In 

the experiment carried out, a deep learning model with 100 epochs was trained. After training 

the model, notable trends in the loss and accuracy metrics across different epochs was observed.  

Figure 20. below illustrates the trend in training and validation loss across epochs. 

Initially, both training and validation losses decreased consistently, indicating the model's 

learning process. However, beyond 50 epochs, the training loss continued to decrease, while 

the validation loss showed a slight increase, signifying potential overfitting.  
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Figure 20: Comparison of Training and Validation Loss  

The comparison between training loss and validation loss (Figure 20) is crucial in 

assessing the model's performance. When the training loss continues to decrease while the 

validation loss increases, it shows the model is becoming too specific to the training data, 

potentially leading to good generalization on new data.  

The scatter plot in Figure 21 demonstrates the relationship between predicted and actual 

values. A closer clustering of points around the diagonal line represents more accurate 

predictions.  

 
Figure 21. Scatter plot of Predicted vs Actual Values 

 

 

Figure 22. Prediction Values gotten from the Model 
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Figure 23. Predicted values and the Actual values 

The predicted values (Figure 23.) obtained from the model hold significant relevance 

in drilling operations. These predictions can guide decision-making in adjusting drilling 

parameters like pressure, torque, or mud volume to optimize the Rate of Penetration (ROP) 

during drilling. Moreover, by analyzing the predicted values against actual parameters (Figure 

23.), engineers can pinpoint optimal calibration points for efficient drilling activities. In this 

AI-driven drilling operation focusing on regression (predicting ROP), the AUC-ROC plot, 

which is mainly/commonly used in classification tasks, is not applicable in this prediction task. 

AUC-ROC is more relevant in classification problems, helping to evaluate a model's 

performance in distinguishing between classes, which doesn't directly apply in our regression 

context.  

These observations emphasize the need for careful model tuning, monitoring loss 

trends, and interpreting predicted values in optimizing drilling operations for efficiency and 

accuracy. The predicted values derived from our model hold paramount significance in 

optimizing drilling operations. These predicted values serve as pivotal indicators guiding 

decision-making and operational adjustments in real-time drilling.  

In optimizing drilling operations, the predicted values, particularly those related to Rate 

of Penetration (ROP), plays a critical role in optimizing drilling parameters. By leveraging 

these predictions, drilling engineers can fine-tune various operational factors like:   

Pressure and Torque: Here, the predicted ROP values assist in optimizing pressure and torque 

on the drilling equipment. Adjusting these parameters based on predicted values ensures the 

machinery operates within optimal ranges, enhancing drilling efficiency while preventing 

equipment damage.  

Mud Volume and Composition: Here, the model's predictions enable precise adjustments in 

mud volume and composition. Engineers can now tailor the mud's properties, including density 

and viscosity, to match predicted ROP values, thereby facilitating smoother drilling processes.  

Rotational Speed and Weight on Bit: Here, the predicted ROP values inform decisions on the 

rotational speed and weight applied on the drill bit. Aligning these parameters with predicted 

values aids in maintaining optimal drilling rates without compromising tool integrity.  

Calibration Point Identification: utilizing predicted values against actual drilling parameters 

allows for the identification of calibration points. By comparing predicted ROP values with 

observed values during drilling operations, engineers can discern optimal calibration settings 

for the drilling equipment. This process aids in establishing precise operational configurations 

for enhanced drilling efficiency.  

In Conclusion we can say that, with the integration of predicted values into drilling 

operations offers a strategic advantage by enabling proactive adjustments and optimizations. 
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These values serve as actionable insights, empowering drilling engineers to fine-tune 

operational parameters, identify optimal calibration settings, and ensure efficient, speedy and 

productive drilling operations.  

 
Figure 24. Model predictive performance 

The Line Plot (Figure 4.10) visualizes the model's predictive performance by 

demonstrating how closely the predicted ROP aligns with the actual ROP values. The consistent 

alignment between the two (Actual values and the Predicted values) lines indicates a strong 

model that accurately predicts ROP across the dataset. This line plot provides an intuitive way 

for users and experts to observe and interpret the relationship between predicted and actual 

values, thereby gaining insights into the model's performance in predicting ROP for drilling 

operations.  

 

CONCLUSION 

Conclusively, the research in trying to answer the questions outlined in chapter one, 

took an in-depth view of all the key components of the system architecture “the development 

of recursive deep learning based natural language processor for crude oil drilling operations”. 

The components are all inter-related and worked together to achieve the aim of extracting 

calibration points from daily oil drilling document to make informed predictions on drilling 

processes; this is geared towards increasing the accuracy of the model and mitigating the risks 

of non-productive time in drilling events thereby increasing the efficiency of the drilling 

operation. The algorithm is recursive, ensuring accurate result which is visually represented 

through an appropriate visualization for ease of decision making.  
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