
Journal of Xi’an Shiyou University, Natural Science Edition                                                              ISSN: 1673-064X   

http://xisdxjxsu.asia                                VOLUME 20 ISSUE 02 FEBRUARY 2024                                       263-272  

Comprehensive Analysis of Geo-polymerisation Techniques in Soil 

Stabilization 
 

Shahzad Haider1, Muhammad Younas, Muhammad Ibrahim, Kashif Abbas, Saad Ajmal Khan, 

Numan Umar, Umar Hayat7, Bilal Khan8 

 
1. College of Agronomy, Northwest A & F University, P.R. China. 

2. Department of Soil and Environmental Sciences, Amir Muhammad Khan Campus, The University 

of Agriculture, Peshawar 25000, Pakistan 

3. College of Plant Protection, Jilin Agricultural University, Changchun 130012, China 

4. College of Agronomy, Jilin Agricultural University, Changchun 130012, China 

5. Department of Soil and climate sciences, The University of Haripur 

6. Department of Soil and Environmental Sciences, Amir Muhammad Khan Campus, The University 

of Agriculture, Peshawar 25000, Pakistan 

7. Zhengzhou fruit research institute, Chinese Academy of Agricultural sciences, China 

8. Department of agronomy, The university of Haripur 

 

 

Abstract 

The shear strength of soil is a critical factor in the engineering of foundations, and 

extensive research has been conducted to enhance soil robustness. Historically, studies have 

incorporated various admixtures and chemical stabilizers to augment soil's geotechnical 

characteristics. While conventional binders such as cement demonstrate significant 

stabilization capabilities, their economic feasibility and environmental impact are concerns. In 

recent years, there has been a growing interest in developing alternative cementitious materials 

with reduced carbon dioxide emissions. Initiatives have focused on the adoption of eco-friendly 

binding agents with minimal carbon impact, utilizing industrial by-products like fly ash. This 

has led to the exploration of such waste materials in the formulation of geopolymer binders, 

potentially offering an environmentally sustainable and effective solution for augmenting the 

strength of soft soils. This review emphasizes prior investigations into the utilization of fly ash 

in the synthesis of geopolymers as a soil stabilizer and examines the prospects and challenges 

associated with the alkaline activation of alumino-silicate materials (geopolymerization) as a 

substitute for traditional cement. 

 

Introduction 

 

In the context of burgeoning industrialization and population growth, the imperative for 

constructing buildings and infrastructure on soft soil has intensified. To augment the load-

bearing capacity of soft soil, a variety of soil stabilization methodologies have been 

implemented. These include vacuum consolidation, the utilization of prefabricated and 

granular vertical drains, the reinforcement of granular columns through vibration (such as 

vibrated stone columns and sand compaction piles), and various stabilization techniques like 

deep mixing, pre-mixing, and the application of lightweight treated soil [1]. Among these, the 

technique of stabilizing soil using treated soil columns via deep soil mixing, established over 

three decades ago, is particularly prevalent [2, 3]. 

 

The deep stabilization process essentially entails the in-situ modification of soil using 

stabilizing agents to enhance its shear resistance, amplify load-bearing capabilities, and 

diminish settlement [1, 4, 5]. Scholarly research underscores numerous advantages of this 

method, including expedited construction timelines, dependability, adaptability, and efficient 

resource utilization [1, 6, 7]. Traditionally, calcium-based binders (like lime or cement) have 

been favored for soil stabilization due to their robustness and ease of use, resulting in the 
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formation of reinforced soil structures such as soil-cement or soil-lime columns [8, 9, 71]. 

However, the environmental impact and financial cost of these binding agents have recently 

come under scrutiny. The production process of cement alone is responsible for approximately 

7% of anthropogenic CO2 emissions globally, primarily due to the decomposition of 

carbonates [10, 11]. It has been estimated that the production of every tonne of cement results 

in the emission of an equivalent tonne of CO2, a greenhouse gas primarily implicated in global 

warming [12, 70]. 

 

In addition to CO2 emissions, the production of cement also generates significant 

amounts of nitric oxide (NOx), with cement kilns being a primary source of this pollutant [68]  . 

NOx plays a critical role in the formation of acid rain and contributes to the greenhouse effect, 

exacerbating environmental degradation [73, 13]. Furthermore, there is a global trend of 

excessive consumption of raw materials necessary for cement production. Consequently, the 

field of civil engineering is actively exploring alternatives to cement for soil stabilization that 

are both economically feasible and environmentally sustainable. In recent developments, 

geopolymers have emerged as a focal point due to their ability to incorporate solid waste and 

by-products. This not only provides a cost-effective solution but also addresses the 

management of hazardous residues that require treatment and safe disposal [14]. 

Geopolymer  

Geopolymerization involves the synthesis of a material rich in alumina (Al2O3) and 

silica (SiO2), forming an inorganic polymer matrix [15]. This process is characterized by a 

rapid chemical reaction under alkaline conditions with silicon-aluminum minerals, culminating 

in the formation of three-dimensional polymeric chains. These chains exhibit a distinctive ring 

structure, primarily constituted of Si-O-Al-O bonds [16]. The geo-polymerization process 

necessitates the dissolution of aluminum and silicon in an alkaline solution, followed by the 

transportation of these dissolved species. Subsequent polycondensation leads to the 

development of a three-dimensional network composed of aluminosilicate structures [17]. An 

illustration of typical geopolymer structures is provided in Table 1. 

The geopolymer matrix demonstrates ionotropic properties akin to those found in 

zeolites, attributable to the integration of heterocyclic rings of varying dimensions, composed 

of interconnected tetrahedral units of silica and alumina within its framework [18, 19]. While 

geopolymers typically exhibit a semi-crystalline morphology, zeolites are characteristically 

crystalline. The dissolution of fly ash geopolymers in an alkaline medium leads to a rapid 

disintegration of their vitreous components. This rapid dissolution process limits the time and 

space available for the gel phase to evolve into a fully crystallized structure, resulting in an 

amorphous, semi-amorphous, or microcrystalline configuration [20-22]. 

Contrastingly, the principal binding phase in Portland cement is identified as calcium 

silicate hydrate (CSH) [23-25]. In geopolymers, however, the binding mechanism is attributed 

to the formation of a three-dimensional amorphous aluminosilicate network [19, 26-28]. The 

structural integrity of geopolymers is enhanced through the polycondensation of silica and 

alumina precursors, eliminating the necessity for calcium-silicate-hydrate gel [29]. The 

synthesis of these materials typically involves the use of an aluminosilicate raw material 

activated by a predominantly alkali (sodium or potassium) solution, often supplemented with 

water glass [30, 31]. A notable feature of geopolymers is their capacity to solidify at ambient 

temperatures, obviating the need for external heating and thereby reducing CO2 emissions, 

presenting a more environmentally sustainable alternative to traditional cement [32]. 
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Geopolymerization technology facilitates the utilization of substantial amounts of both 

hazardous and non-hazardous waste, thereby diminishing the environmental impact [33]. This 

technology enables the transformation of solid industrial waste containing aluminosilicates into 

functional products, as these wastes can be immobilized and stabilized within the geopolymer 

matrix [34]. Theoretically, any industrial residue with sufficient silica and alumina content can 

be utilized for geopolymerization [27]. 

Fly ash act as Alkali-activated material  

Industrial residues such as fly ash and slag have demonstrated considerable potential as 

precursor materials for geopolymer synthesis. Fly ash, in particular, is esteemed for its fine 

particulate size relative to slag, conferring a higher degree of chemical reactivity [21]. 

Additionally, fly ash is generated in substantial volumes worldwide and exhibits notable 

malleability, positioning it as the predominant material for geopolymerization globally [35, 

36]. Fly ash originates from the combustion of pulverized coal and is harvested via mechanical 

and electrostatic precipitation from the gaseous effluents of power generation facilities [37]. 

Within fly ash, the constituents SiO2 and Al2O3 are predominantly in an amorphous 

state, facilitating effective chemical interactions with NaOH and Na2SiO3 [38]. Fly ash is 

categorized into two distinct classes based on the composition of these oxides: Class C and 

Class F. Class C fly ash is characterized by a combined content of ferric oxide, silica, and 

alumina ranging between 50% and 70% of its total composition, along with a CaO (calcium 

oxide) concentration exceeding 20%. Conversely, Class F fly ash exhibits a higher proportion 

of the first three oxides, exceeding 70%, while maintaining a CaO content below 10% [39]. 

The low calcium fly ash (ASTM Class F) is often preferred as a precursor material over Class 

C, due to the high calcium content in the latter potentially disrupting the microstructural 

integrity and interfering with the geopolymerization process (54). It is noteworthy that 

comprehensive research conducted by the US Department of Energy has established that, when 

utilized appropriately, fly ash can be employed for soil stabilization without posing significant 

environmental risks [40]. 

Alkali-activated Solution  

The alkaline solution most frequently utilized in geopolymerization typically comprises 

a blend of either sodium hydroxide (NaOH) or potassium hydroxide (KOH) with sodium 

silicate or potassium silicate [41]. Research indicates the feasibility of employing a singular 

alkaline activator within this process. Additionally, it has been recognized that the specific 

nature of the alkaline solution plays a crucial role in the polymerization dynamics [42]. When 

the alkaline solution contains soluble silicates (sodium or potassium), the reaction proceeds at 

a more rapid pace compared to scenarios where only alkaline hydroxides are used. Empirical 

studies have validated that an augmented interaction between the source material and the 

alkaline solution is attainable when a sodium silicate solution is integrated with a sodium 

hydroxide solution, thereby enhancing the overall efficacy of the geopolymerization process 

[30, 43]. 

Using geopolymer to stabilize soil  

Extensive research has been dedicated to the application of geopolymers in various 

fields, including the production of ceramics, earth bricks, mortar, and concrete [44-48]. The 

concept of using geopolymer binders for soil stabilization is relatively novel. Notably, 



Journal of Xi’an Shiyou University, Natural Science Edition                                                              ISSN: 1673-064X   

http://xisdxjxsu.asia                                VOLUME 20 ISSUE 02 FEBRUARY 2024                                       263-272  

geopolymers based on Palm Oil Fuel Ash (POFA) and Fly Ash (FA) have been utilized for 

stabilizing clay and sandy soils, respectively, with reports of achieving long-term, high-

strength outcomes [9, 31, 38, 41, 49-53]. Investigations into the use of FA-based geopolymers 

for soft soil stabilization have revealed that, compared to Portland cement, FA requires an 

extended curing duration to attain the desired strength [49, 50, 53, 69]. 

Phetchuay et al. [38] conducted an investigation on the carbon footprint and strength 

enhancement of soft Coode Island Silt (CIS) when stabilized with a Class F FA – calcium 

carbide residue (CCR) geopolymer. Their results indicated that the FA-CCR geopolymer not 

only improved the strength of CIS but also exhibited lower carbon emissions compared to CIS 

stabilized with cement. The strength of FA-CCR geopolymer-stabilized CIS was found to 

surpass that of FA geopolymer-stabilized CIS at both 25 ̊C and 40 ̊C. 

 

In the work of Yaghoubi et al. [15], a liquid alkaline activator (L) consisting of 30% NaOH 

and 70% Na2SiO3, with 15% S and 5% FA, was proposed as an effective geopolymer mixture 

for stabilizing CIS in Deep Soil Mixing (DSM). The NaOH used in their study was prepared 

at 8 Molarity, while Na2SiO3 had a SiO2/Na2O ratio of 2.00. 

Cristelo et al. [50] explored the use of fly ash as a source of amorphous silica and 

alumina for enhancing soft soil (sandy clay). Their findings indicated that an increase in fly ash 

content correlated with improved strength. However, elevating the activator concentration 

beyond 15 Molar did not yield additional benefits, as comparable results were achievable at 

12.5 Molar. This concentration was not only more economical but also chemically more stable, 

aligning with the findings of [49]. While buried curing did not match the strength obtained 

under ambient temperature and humidity conditions, the evolution patterns of strength were 

similar, with the final values being substantial [67]. 

The synthesis of materials through silica/alumina reactions with alkali agents like 

sodium or potassium results in a molecular structure remarkably analogous to that of natural 

rocks, exhibiting comparable stiffness, durability, and strength. The alkaline activation of 

alumino-silicate materials, known as geopolymerization, is increasingly being recognized as a 

potential substitute for Ordinary Portland Cement (OPC). This is due to the ability of 

geopolymers to address many of the common limitations associated with OPC use [21]. The 

implementation of Deep Soil Mixing (DSM) technology has been extensively investigated [54, 

55], with these studies primarily focusing on OPC or OPC combined with Slag (S) or Fly Ash 

(FA) as the principal binders. 

While FA and S have been explored as alternatives to OPC in ground improvement 

applications, it has been observed that their standalone use does not match the strength imparted 

by OPC. However, by applying alkaline activation (geopolymerization) to these waste 

materials, it is possible to ameliorate these shortcomings. This approach potentially leads to 

the creation of geopolymer binders that are even more robust than their OPC counterparts [49, 

51]. 

Scientific inquiry has delved into the efficacy of alkali-activated low-calcium and high-

calcium Fly Ash (FA) as amorphous sources of alumina and silica [49, 50, 56, 57]. 

Microstructural analyses predominantly reveal that binding gels, such as N-A-S-H and/or C-

A-S-H, form within soil voids, facilitating the development of denser microstructures and 
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consequently enhancing compressive strength. Additionally, it has been observed that the use 

of high-calcium FA as a precursor leads to more rapid short-term strength gains in stabilized 

soil. 

Pioneering work by Phummiphan et al. [17] utilized high-calcium FA-based 

geopolymers to stabilize marginal lateritic soil, creating an environmentally friendly base for 

pavement in Thailand. Their research indicated that the early strengths of geopolymer-

stabilized marginal lateritic soil could be augmented by incorporating waste calcium carbide 

residue (CCR) [17, 58]. The smaller-sized CCR functioned as a binder, reacting with the 

alumina and silica present in the soil and FA, resulting in the formation of Calcium Silicate 

Hydrate (CSH) [59]. 

Further investigations by Phummiphan et al. [60] explored the use of two different 

waste types (Class C FA and Granulated Blast Furnace Slag (GBFS)) with liquid alkaline 

activators for stabilizing marginal lateritic soil to develop "green" pavement base materials. 

The replacement of FA with GBFS in geopolymer formulations enhanced the early seven-day 

Unconfined Compressive Strength (UCS) of the stabilized soil, particularly with high sodium 

silicate (Na2SiO3) to sodium hydroxide (NaOH) ratios (NS:NH ≥ 80:20). Optimal GBFS 

concentrations corresponded to the highest seven-day UCS, which decreased in accordance 

with the NS:NH ratio. GBFS exhibited a significant impact on the early and long-term UCS of 

FA geopolymer-stabilized lateritic soil at lower NS:NH ratios of 50:50, with the greatest UCS 

observed at 28 and 60 days for ratios of 60:30:10 LS:FA:GBFS and 90:10 NS:NH. 

Microstructural analysis revealed the coexistence of calcium silicate hydrate (CSH) and sodium 

alumina silicate hydrate products within the FA geopolymer-stabilized LS/GBFS blends. These 

results suggest that GBFS, traditionally considered a waste product, can be effectively utilized 

as a partially reactive replacement material in FA geopolymer pavement applications. 

Sargent et al. [61, 72] conducted research on the potential of utilizing alkali-activated 

by-products like FA, Ground Granulated Blast Furnace Slag (GGBS), and red gypsum (RG) to 

modify the geotechnical properties of soft soil (alluvial soil). Their experiments demonstrated 

significant enhancements in soil strength through the use of alkali-activated GGBS, GGBS-

FA, and GGBS-RG. 

Phetchuay et al. [62] investigated the production of pavement material meeting the Thai 

national road authority's compressive strength specifications using silty clay with FA as a 

precursor and CCR as an alkali activator. This study confirmed that CCR could be sustainably 

used as an alkaline activator in geopolymer-stabilized subgrade materials, thereby repurposing 

substantial quantities of material traditionally viewed as waste for landfill. It has been 

experimentally validated that geopolymers can be effectively utilized as soil stabilizers for clay 

soils [63]. Additionally, the application of slag-based geopolymers with marine clay has been 

examined [64]. 

Potential Research opportunities  

The corpus of scholarly literature on fly-ash based geopolymers predominantly focuses 

on their application in the domain of building materials, with comparatively fewer studies 

addressing their use in soil stabilization. In the realm of geopolymer-stabilized soil, the 

unconfined compressive strength (UCS) is commonly adopted as a practical measure for 

assessing strength development. However, aspects such as the shear and consolidation 

behaviors of geopolymer-stabilized soil remain under-explored. 
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To comprehensively understand the shearing behavior of geopolymer-stabilized soil, 

triaxial testing methodologies could be implemented. These tests, which simulate the 

conditions that soil would encounter in situ, including pressure and deformation, are 

instrumental in evaluating the soil's resistance to shear under various stress states. Additionally, 

the oedometer test, a standard procedure for assessing soil consolidation, can be effectively 

employed to analyze the consolidation characteristics of soil treated with fly ash-based 

geopolymer. This test would be particularly valuable for understanding how the soil behaves 

under long-term loading conditions. 

For a holistic evaluation, it is essential that these tests encompass both short-term and 

long-term curing periods [66]. This approach would allow for a more comprehensive 

understanding of the behavior of geopolymer-stabilized soil over time, encompassing both the 

initial setting phase and the subsequent evolution of mechanical properties. Such research 

would significantly contribute to the field, offering insights into the long-term performance and 

stability of geopolymer-stabilized soils under various environmental and loading conditions. 

Conclusion 

This study reviews soil stabilization via geopolymerization, highlighting its 

effectiveness in utilizing solid waste and by-products for environmental management. 

Geopolymerization, characterized by the alkaline activation of alumino-silicate materials, 

offers a promising alternative to Ordinary Portland Cement (OPC) by addressing its limitations. 

Enhanced reactivity is achieved by combining sodium silicate and sodium hydroxide solutions. 

In particular, Fly Ash (FA) and Calcium Carbide Residue (CCR) geopolymer-stabilized soils 

show superior performance due to the formation of both Sodium Aluminosilicate Hydrate (N-

A-S-H) and Calcium Silicate Hydrate (C-S-H), thereby improving structural properties. 
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