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Abstract- Precise measurement of the thousand-grain weight is 

critical for accurately forecasting rice yields. This parameter is 

essential for variety development and appropriate cultivation 

management. Precise identification and enumeration of rice grains 

are required for accurate measurements of thousand-grain weight, 

a pivotal stage in the research process. However, the procedure has 

substantial challenges due to the small size of rice grains, their 

intrinsic similarity, and the differing degrees of stickiness. The 

TCLE-YOLO model is an advanced deep learning technique that 

integrates a transformer encoder and coordinate attention module. 

It utilises the robust YOLOv5 as the underlying network 

architecture. The model integrates a coordinate attention (CA) 

module into the YOLOv5 backbone to enhance feature 

representation in small target regions. The system also 

incorporates a specialist detection head designed for detecting 

small targets. This head utilises a feature map with high resolution 

and low-level details. Furthermore, the neck module employs a 

transformer encoder to augment the network's capacity to include 

a broader spectrum of data and amplify the extraction of crucial 

characteristics from recognised targets. This increases the 

sensitivity of the additional detecting head specifically towards 

rice grains, particularly those that have a significant level of 

adhesion. The implementation of EIoU loss significantly improves 

accuracy. The results of our experiments on our custom rice grain 

dataset demonstrate outstanding precision, recall, and mAP@0.5 

scores of 99.20%, 99.10%, and 99.20%, respectively, surpassing 

several state-of-the-art models. The TCLE-YOLO model we have 

developed offers a robust foundation for accurately identifying 

and quantifying rice grains. It provides vital information for 

accurate measurements of thousand-grain weight and the efficient 

assessment of rice breeding procedures. 

 

Index Terms- About four key words or phrases in alphabetical 

order, separated by commas. Keywords are used to retrieve 

documents in an information system such as an online journal or a 

search engine. (Mention 4-5 keywords) 

I. INTRODUCTION 

o obtain accurate estimates of rice yields, it is essential to 

precisely measure the thousand-grain weight. This parameter 

is critical for variety breeding and efficient crop management. 

Accurate identification and enumeration of individual rice grains 

are essential for obtaining precise measurements of thousand-

grain weight, a critical stage in the research process. Nevertheless, 

the method encounters substantial obstacles as a result of the 

diminutive dimensions of rice grains, their indistinguishable 

appearance, and the fluctuating degrees of adhesiveness. The 

TCLE-YOLO model is a cutting-edge deep learning method that 

integrates a transformer encoder and coordinate attention module, 

leveraging the powerful YOLOv5 as the underlying network 

architecture. In order to improve the representation of features in 

small target regions, the model smoothly incorporates a coordinate 

attention (CA) module into the YOLOv5 backbone. In addition, it 

includes a dedicated detection head that is specifically designed to 

identify small targets. This is achieved by utilising a feature map 

that has a high level of resolution and includes fine-grained details. 

In addition, the neck module integrates a transformer encoder to 

enhance the network's ability to capture a wider range of 

information and enhance the extraction of important properties 

from selected targets. This enhances the responsiveness of the 

supplementary detection component to rice grains, especially 

those that have a substantial level of adhesion. The 

implementation of EIoU loss greatly enhances accuracy. The 

results of our experiments on our custom rice grain dataset show 

exceptional precision, recall, and mAP@0.5 scores of 99.20%, 

99.10%, and 99.20%, respectively. These scores surpass those 

achieved by other cutting-edge models. The TCLE-YOLO model 

demonstrates exceptional efficacy in the identification and 

quantification of rice grains. This study offers useful insights that 

may be used to accurately quantify the thousand-grain weight and 

effectively evaluate rice breeding procedures.  

Deep learning-based item detection approaches provide accurate 

and reliable crop counting, in contrast to the previously described 

image processing methods. This is due to their exceptional ability 

to extract strong features and their capacity for autonomous 

learning [8,9,10]. Khaki et al. [11] conducted a study where they 

proposed a sliding window strategy that employed a CNN 

classifier to precisely identify and quantify maize cob grains. Their 

approach produced remarkable outcomes, attaining an RMSE of 

8.16% while calculating the mean quantity of grains in a grain-

counting assignment. Gong et al. [12] conducted a study where 

they created a fully convolutional network that accurately 

identified grains within a panicle. The network achieved an 

excellent accuracy rate of 95%. Tan et al. [13] employed YOLOv4 

to detect cotton seedlings in individual frames in their study. In 

addition, they utilised an optical flow-based tracking technique to 

estimate the movements of the camera and ascertain the number 

of cotton seeds. Lyu et al. [14] did a study where they effectively 

detected and measured green citrus fruits in orchards using an 

improved version of YOLOv5. Their methodology entailed 

integrating a convolutional block attention module with a 

T 
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detection layer. The experiment's findings showcased that the 

suggested model attained a remarkable mean average precision 

(mAP) of 98.23% at a threshold of 0.5, along with a recall rate of 

97.66% specifically for green citrus fruits. Rong et al. [15] devised 

a tomato cluster identification technique by utilising an improved 

YOLOv5-4D. By utilising both RGB photos and depth images as 

input, they achieved a remarkable accuracy of 97.9% and a mean 

average precision (mAP) of 0.748 at the intersection over union 

(IoU) threshold range of 0.5 to 0.95. 

Deep learning-based object detection algorithms provide a highly 

accurate and efficient approach for counting targets. However, due 

to the small size of rice grains, their remarkably similar 

appearances, and the lack of intricate details in each grain, the 

visual characteristics that can successfully differentiate distinct 

sticky grains are usually limited to a small, specific area. As a 

result, these characteristics are not easily assimilated by a network. 

Consequently, the detector may fail to detect all the grains, 

resulting in a reduction in counting accuracy and ultimately 

impacting the precision of yield calculations. Furthermore, there 

is a widespread acknowledgment that the weight of a thousand 

grains is closely associated with many features of the grains, such 

as their length, width, thickness, and the ratio of kernel length to 

width [16]. Precise identification and enumeration of rice grains is 

essential for getting accurate grain-size characteristics utilising 

imaging technology. Additionally, it plays a crucial role in 

assessing farming techniques, examining seed characteristics, 

developing new strains, and efficiently classifying rice kernels. 

Therefore, to effectively identify and quantify rice grains, it is 

essential to extract and exploit significant feature data from 

specific regions of the grains. Deep learning algorithms are crucial 

in this process, especially for accurately identifying highly sticky 

rice grains that provide difficulties in distinguishing. 

According to our comprehension, the attention module exhibits 

resemblances to the human visual attention mechanism. It 

prioritises specific regional information while discarding 

secondary input, similar to how the human brain processes tasks. 

This attribute significantly enhances the effectiveness of the model 

in processing input and can have a pivotal impact on improving 

the feature perception of network models. Additionally, this 

technology can be used to detect and locate minuscule objects that 

may be concealed or adhered together [17]. For instance, Peng et 

al. [18] successfully developed a soybean aphid recognition model 

by utilising a Convolutional Neural Network (CNN) with an 

attention mechanism, resulting in enhanced accuracy. Zhang et al. 

[19] did a study where they integrated an attention mechanism and 

a residual network (ResNet) into a system for identifying flawed 

wheat grains. The findings demonstrated a notable enhancement 

in the precision of categorising flawless and different forms of 

flawed wheat grains. The significance of including an attention 

mechanism into object detection algorithms was emphasised in 

our study. This upgrade has been empirically demonstrated to 

significantly enhance the precision of the algorithms, rendering it 

one of the most efficacious improvements among a multitude of 

modifications. 

Due to the constraints of current image analysis technologies in 

detecting and counting grains, as well as the challenges posed by 

sticky rice grains, it is necessary to create a deep learning model 

that can effectively meet these particular demands. The model 

should possess robust feature recognition abilities, prioritising the 

accurate identification of features in the designated areas to ensure 

precise adhesion recognition. The system should possess the 

capability to distinguish between cohesive rice grains and 

autonomously identify specific areas with varying degrees of 

stickiness. Furthermore, the model should possess the capability 

to autonomously identify and pinpoint minute targets that exhibit 

highly similar attributes, hence augmenting its proficiency in 

detecting rice grains. 

This work endeavours to design a technique for detecting and 

quantifying rice grains through thorough investigation and 

analysis. The suggested methodology integrates an attention 

mechanism with YOLOv5, denoted as TCLE-YOLO. To address 

the problem of distinguishing sticky rice grains, we integrate the 

coordinate attention (CA) module [21] into the YOLOv5 

backbone module. The purpose of this integration is to augment 

the model's capacity to focus on minute objectives, hence 

enhancing the network's proficiency in expressing characteristics. 

In addition, a dedicated detecting head has been created to 

improve the identification of small targets. This head is 

specifically engineered to possess exceptional sensitivity and is 

founded upon a transformer encoder's high-resolution feature 

map. The objective of this modification is to strengthen the overall 

capacity for recognising diminutive targets [22]. In addition, the 

transformer encoder is employed in the neck module to expand the 

network's receptive area and prioritise the important feature 

information related to the rice grain region. This increases the 

responsiveness of the supplementary detection component to 

smaller entities. The subsequent sections of this document are 

structured in the following manner: Section 2 provides a detailed 

description of the data sources and research methodologies 

employed in the creation of TCLE–YOLO. Section 3 focuses on 

the analysis of the experimental findings and facilitates in-depth 

conversations. Section 4, ultimately, provides the results derived 

from our investigation. 

II. MATERIALS & METHODS 

A. Pre-processing & Image Acquisition 

The experimental materials utilised in this investigation were 

cultivated at the Rice Research Institute, Anhui Academy of 

Agricultural Sciences. The rice grains were meticulously arranged 

on a spotless white background board in anticipation of capturing 

the photograph. The photos were acquired via a camera, as 

depicted in Figure 1, with a mobile phone camera affixed to a 

visual platform. The camera holder's vertical adjustment 

facilitated the replication of various distances. The investigation 

involved capturing photos of rice grains with different levels of 

adhesion using a cell phone camera. The distances from the white 

background board were 8 cm, 15 cm, and 20 cm. According to the 

criteria outlined in [23], a local picture area containing 210 grain 

adhesions was categorised as having 'mild adhesion,' while 1020 

grains were categorised as 'moderate adhesion,' and more than 20 

grains were branded as 'severe adhesion.' There were 1000 rice 

grain photographs recorded, each having a resolution of 3024 × 

4032. The photos comprised of 250 rice grains with mild adhesion, 

400 rice grains with moderate adhesion, and 350 rice grains with 

severe adhesion. 
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Figure 1. Seed Planter Image Acquisition and Dataset Samples 

 

Figure 1 displays a collection of sample photos illustrating rice 

grains with different degrees of adherence. The photographs were 

acquired in RGB format, with the original images having a far 

greater resolution than the required input image size for YOLOv5. 

Managing the high resolution of the original photos may provide 

a difficulty during network training. It could potentially exert 

excessive pressure on the GPU memory, resulting in training 

failures. To resolve this issue, the photos of rice grains that were 

taken were reduced to a resolution of 640 × 640. The resolution 

change was implemented to strike a balance between maintaining 

crucial image features and improving model training for optimal 

efficiency and success, taking into account resource constraints. 

B. Annotation & Image Augmentation 

In order to successfully train a deep neural network, it is important 

to possess a substantial quantity of images. One established 

approach to enhance the performance of the model is to expand 

the dataset through the utilisation of diverse methodologies [24]. 

The utilisation of mosaic data augmentation, as depicted in Figure 

2, entails the stochastic selection of four photos. Subsequently, 

these photos are proportionally adjusted, mirrored, and 

systematically organised to create a composite image. This 

method facilitates the process of recombination and amplifies the 

dataset [25]. Furthermore, diverse data augmentation techniques 

were utilised to improve the original photos, leading to a 

significant expansion in the dataset size for rice grain detection 

and counting. The techniques encompassed brightness conversion, 

multi-angle image rotation, and noise addition. Upon 

implementing data augmentation techniques, the dataset's sample 

count was augmented to 6000. 

Ground truth (GT) images for object identification model training 

were labelled using bounding boxes. The labelling technique 

employed the LabelImg annotation software for accurate hand 

annotation. The regions containing individual rice grains were 

delineated using green bounding boxes. The annotation results 

were saved in XML files and used to train the model on the 

training dataset. Furthermore, they were employed to assess the 

model's performance on the validation and test datasets. The rice 

grain photos were partitioned into training and validation datasets 

at a ratio of 7:2, with the remaining images serving as the test set 

to assess the performance and resilience of the proposed model. 

 

 
Figure 2. Annotated Sample images (Moderately & Severely 

adhered) 

C. Rice Grains Detection and Counting Model 

 

Experienced researchers are undoubtedly acquainted with the 

YOLO (You Only Look Once) framework, known for its efficient 

single-stage detection abilities. Throughout its development, the 

framework has seen multiple changes, ultimately resulting in the 

emergence of YOLOv5 as a particularly noteworthy version. 

YOLOv5 is renowned for its concise architecture, versatility, and 

remarkable efficiency in analysing images, rendering it a superb 

option for real-time object detection models [26]. The YOLOv5 

comprises three main components: the backbone, neck, and head. 

The backbone module plays a vital role in YOLOv5 by extracting 

features from input photos. The neck module effectively combines 

information from several network tiers by up-sampling features 

from the backbone module via both bottom-up and top-down 

pathways. The detection head module in target detection jobs is 

responsible for anticipating picture attributes and overseeing 

category, position, confidence, and other pertinent elements. This 

article utilised the YOLOv5 framework as the foundation for the 

specified detection and counting methodology. However, the 

inclusion of numerous convolutions in the feature pyramid 

network of YOLOv5 may lead to information loss during training, 

particularly for small targets [27]. The precise identification and 

quantification of rice grains can be a difficult task due to their 

diminutive size, limited resolution, and comparable colour and 

structure, which frequently leads to their sticking together and 

obstructing one another. The detection of small targets requires the 

utilisation of high-resolution representations, which may not be 

adequately captured in deep-layer features. 

In order to enhance the model's accuracy and adaptability in 

identifying and quantifying rice grains, we have integrated a 

Coordinate Attention (CA) module into the YOLOv5 backbone. 

In addition, we have incorporated a transformer encoder into the 

neck module. Furthermore, a detection head with a high level of 

sensitivity towards objects of small dimensions was integrated. 

Figure 3 displays the structure of our rice grain detecting model. 

Placing the coordinate attention module ahead of the SPFF block 

in the backbone module improves its ability to capture complex 
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information from smaller targets, similar to that of an expert 

researcher. By employing the transformer encoder, the model 

efficiently enhances its ability to perceive a wider range of 

information and focuses its attention on important features within 

the region of the rice grain. The output of the transformer encoder 

is a feature map that has both low-level details and high-

resolution. Subsequently, the input is directed towards the 

detecting head, which is explicitly engineered to identify and 

locate targets of reduced dimensions. 

 
 

Figure 3. Developed Methodology 

D. Enhanced Backbone Subsystem 

The YOLOv5 model's backbone module is specifically engineered 

to effectively extract features from images. This is accomplished 

by employing a blend of CBS and C3_x blocks, which are 

subsequently merged together using an SSPF. However, the 

progression of visual characteristics from superficial to profound 

layers, coupled with a reduction in magnitude, can occasionally 

lead to the exclusion of significant semantic particulars, especially 

when addressing diminutive objects. Preserving semantic and 

location information is crucial for accurate recognition of rice 

grains, particularly in measuring thousand-grain weight, due to 

their small size, high overall similarity, and varied adhesion 

degrees. Expanding upon the discoveries made by Li et al. [28], 

which emphasised the significance of an attention mechanism in 

directing deep learning networks towards crucial characteristics, 

we integrated a Coordinate Attention (CA) module prior to the 

SSPF block in the foundational structure, as illustrated in Figure 

4. 

 

The CA module possesses the capability to incorporate coordinate 

information and produce attention maps. When dealing with a 

feature map X with dimensions of C × H × W, the coordinate 

information is embedded by encoding each channel along the 

horizontal and vertical coordinates. This is accomplished by 

employing two spatial pooling kernels: (H, 1) and (1, W). Two 

attention maps are produced, one for the horizontal direction with 

dimensions C × H × 1, and another for the vertical direction with 

dimensions C × 1 × W. The attention maps illustrate the existence 

of the region of interest in the associated row and column. They 

capture long-range connections in one spatial direction with 

precise positional details, similar to the approach of a skilled 

researcher. The two feature maps are merged in the channel 

dimension and subsequently undergo convolutional processing, 

yielding an intermediate feature map with dimensions of C × (W 

+ H) × 1. To generate attention weight maps in both the horizontal 

and vertical directions, the intermediate feature map is partitioned 

along the spatial dimension. Subsequently, the feature maps 

obtained from the split are subjected to separate convolution 

operations. The feature maps undergo normalisation using the 

sigmoid function to produce attention weight maps for both the 

horizontal and vertical orientations. Multiplying the weight maps 

with the input X yields an augmented feature map. The utilisation 

of the CA module enhances the accuracy of the coordinate data for 

rice grains, hence generating feature maps that exhibit heightened 

sensitivity to both direction and position. This aids in the precise 

identification of rice grains by the detection model, particularly 

when they are clumped together. 

 

 
Figure 4. Co-ordinate attention module 
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E. System Architecture for Various Detection Heads 

The detecting head module, positioned posterior to the neck 

module, is tasked with forecasting classifications and producing 

bounding boxes by analysing visual characteristics. When 

handling smaller targets, the feature representation may have 

restricted semantic information, which might pose challenges in 

precisely positioning bounding boxes in comparison to bigger 

targets. During the regression phase of the detection head, there is 

a small deviation of one pixel in the bounding box used for 

regression. The offset greatly affects the precision of forecasting 

small targets. According to reference [27], any divergence in the 

prediction bounding box can affect the network's ability to 

correctly classify the target during the classification phase of the 

detecting head. Convolutional neural networks frequently 

encounter difficulty in detecting little objects as a result of the 

restricted feature information included within the deep feature 

maps they assess. Conversely, features that possess intricate 

spatial information exhibit higher resolutions and excel at 

recognising small targets. To address this problem, a detection 

head with a high level of sensitivity to small targets was integrated. 

Figure 5 illustrates that the prediction head was obtained using the 

low-level, high-resolution feature map in order to enhance the 

ability to detect small targets. A neck module was incorporated 

into the YOLOv5 framework to augment the feature extraction 

process that occurs between the backbone and head modules. A 

transformer encoder block, which includes a self-attention 

mechanism, was smoothly integrated into the YOLOv5 C3 block. 

This improvement greatly enlarges the area of perception in the 

neck, allowing for accurate identification and pinpointing of even 

the most minute targets. The transformer encoder block, depicted 

in Figure 5, comprises two sub-layers. The first sub-layer 

efficiently distributes feature dimensions among several single-

head self-attention mechanisms using a multi-head attention 

mechanism. This strategic approach emphasises the importance of 

specific areas within an image. The network can prioritise vital 

information and identify targets precisely by assessing numerous 

properties using advanced approaches. By merging various 

attention outcomes, this procedure allows the network to acquire 

significant contextual semantic data. The feed-forward neural 

network comprises a multi-layer perceptron (MLP) as a fully 

linked layer, which efficiently prevents feature degradation by 

utilising a second sub-layer. Residual connections are used to 

connect the fusion features of the two sub-layers, while layer 

normalisation is applied before and after both sub-layers to 

enhance convergence and reduce overfitting. By incorporating the 

transformer encoder prior to the detecting head for small objects, 

it enables a thorough representation of global information 

throughout the entire image. This facilitates the transfer of 

contextual information and ultimately enhances the identification 

of rice grains with different levels of adhesion, akin to that of an 

expert researcher. 

 
Figure 5. Transformer encoder block 

III. RESULTS 

The experimental configuration utilised the Windows 10 operating 

system, executed with the PyTorch deep learning framework 

employing Torch version 1.13 and CUDA version 11.6. In my 

research, I employed state-of-the-art computing resources, 

including a high-performance NVIDIA GeForce RTX 4080 

graphics card, an Intel I7-11700K CPU, and a substantial 32GB 

DDR4 3200 memory. The training method employed an input 

image resolution of 640 × 640, utilised SGD as the optimisation 

function, executed for 200 epochs, employed a batch size of 16, 

and initiated with a learning rate of 0.01. The rice grain dataset 

was utilised for both the training and testing phases of the 

programme. 

To assess the model's detection ability, we employed precision (P), 

recall (R), and mean average precision (mAP) as the assessment 

metrics. The metrics are precisely described in the following 

manner: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷
𝑻𝑷 + 𝑭𝑷⁄  

𝑹𝒆𝒄𝒂𝒍𝒍 =  𝑻𝑷
𝑻𝑷 + 𝑭𝑵⁄  

𝑨𝑷 = ∫ 𝑷(𝑹)𝒅𝑹
𝟏

𝟎

 

𝒎𝑨𝑷 =
∑ 𝑨𝒑

𝑵
⁄  

 

Above equations define the terms "true positive" (TP) and "false 

positive" (FP) in the context of rice grain detection. A true positive 

refers to the right identification of rice grains, while a false 

positive refers to the mistaken identification of backgrounds as 
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rice grains. A false negative (FN) refers to the incorrect 

identification of rice grains as background. Accurately 

determining the ground truth box and the prediction box produced 

by the detection model is essential in order to achieve true 

positives (TP) and false positives (FP). The prediction box 

contains crucial information, including the category, confidence 

score, and coordinate data. The forecast results are arranged in 

descending order based on their confidence levels, excluding any 

scores below 0.5. The Intersection over Union (IoU) values are 

computed to identify the maximum overlap between the predicted 

bounding box and the ground truth bounding box. If the 

intersection over union (IoU) value is more than 0.5 and it is the 

first match, it is classified as a true positive (TP). Alternatively, it 

is designated as FP. Consequently, a higher true positive (TP) 

value signifies a better probability of accurate prediction and 

superior model detection performance, whereas an increase in 

false positive (FP) suggests more incorrect detections and a 

decrease in model performance. In research, precision refers to the 

proportion of accurately identified results among all the detected 

results, while recall is the ratio of accurately identified findings to 

the total number of real results. The mean average precision 

(mAP) is a quantitative statistic that evaluates the overall detection 

efficacy of a model. The calculation involves computing the mean 

of the average precision (AP) for each category, which 

corresponds to the area under the precision-recall curve. This 

offers a more equitable and thorough evaluation of the model's 

overall performance. The mAP@0.5 metric denotes the average 

precision, calculated as the mean value, using an Intersection over 

Union (IoU) threshold of 0.5. Conversely, mAP@0.5:0.95 

calculates the mean average precision (mAP) by considering 

several intersection over union (IoU) thresholds. These thresholds 

range from 0.5 to 0.95, increasing by 0.05 increments. During our 

research, we trained multiple detection models utilising the same 

datasets and experimental setups. Once the evaluation metrics on 

the validation set stopped improving after a certain training epoch, 

it became evident that the models had reached a point of 

convergence on the dataset. In order to evaluate their performance, 

the precision, recall, mAP@0.5, and mAP@0.5:0.95 of each 

trained model were compared on the test set. 

 

A. Experiments for Ablation 

As part of our investigation, we conducted ablation experiments 

to assess the efficacy of several modules in the TCLE–YOLO 

model, utilising YOLOv5 as the underlying network. Table 1 

displays the precision, recall, mAP@0.5, and mAP@0.5:0.95 

metrics achieved by different modules, including the coordinate 

attention module and the transformer encoder block stated 

previously. Extensive study and analysis have revealed that 

TCLE-YOLO demonstrates exceptional detecting skills for rice 

grains. This can be due to its distinctive amalgamation of a CA 

module, transformer encoder block, small target prediction head, 

and EIoU loss. It exhibited exceptional performance in terms of 

precision, recall, mAP@0.5, and mAP@0.5:0.95 metrics, 

surpassing other approaches. 

When comparing TCLE–YOLO with YOLOv5, it is crucial to 

emphasise the enhancement in accuracy, which increased from 

0.979 to 0.984. The improvement can be credited to the 

incorporation of the CA module and transformer encoder block. 

By integrating the small target prediction head, the accuracy 

witnessed a significant enhancement, achieving an amazing 0.991. 

The inclusion of the EIoU loss function resulted in a marginal 

enhancement in accuracy. TCLE–YOLO has a remarkable overall 

average accuracy of 0.992, beating YOLOv5 by a significant 

margin of 1.74%. In addition, TCLE-YOLO exhibited improved 

performance in terms of mAP@0.5:0.95, precision (P), and recall 

(R) values when compared to the original YOLOv5. 

TABLE I 

Using the self-built dataset, we compare the evaluation indices of 

yolov5s with various modules. 

 

Model P 

(%) 

R 

(%) 

mAP@0.5 

(%) 

mAP@0.5:0.9 

(%) 

YOLOv5 97.90 98.10 97.50 64.30 

YOLOv5 + 

transformer 

+ CA 

module + 4 

prediction 

heads + 

EIoU 

(TCLE–

YOLO) 

99.20 99.10 99.20 72.20 

YOLOv5 + 

transformer 

+ CA 

module 

98.40 98.40 98.50 67.20 

YOLOv5 + 

transformer 

98.20 98.30 98.20 64.50 

YOLOv5 + 

transformer 

+ CA 

module + 4 

prediction 

heads 

99.10 99.00 99.00 71.20 

 

Figures 6, 7, and 8 display portions of the detection and counting 

outcomes generated by YOLOv5s using various modules, 

employing the self-constructed dataset. In order to enhance clarity, 

the image sections that were encompassed in red boxes were 

enlarged, and arrows were used to identify the highlighted graphs. 

The grain target is denoted by the centroid of a predicted bounding 

box that matches to the target in the image. The number of central 

points is a dependable indicator of the quantity of rice grains 

captured in the photograph. The TCLE-YOLO model, as 

described in this paper, exhibited enhanced robustness and 

precision in rice grain counting, even under conditions of 

significant agglomeration. To gain a more thorough 

comprehension of the model's ability to detect and count, we have 

organised the findings in a tabular fashion, as shown in Figure 9. 

After examining Figure 9, it is clear that the modules of YOLOv5 

exhibit a high level of competence in detecting almost all grains 

that are only slightly attached. Conversely, the TCLE-YOLO 

model distinguishes itself with its remarkable capacity to precisely 

quantify heavily attached rice grains. The incorporation of 

multiple elements, such as a transformer, a CA module, four 

prediction heads, and EIoU loss, led to the attainment of optimal 

performance. This emphasizes the efficacy of integrating these 
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diverse modules, which are essential for permitting accurate 

measurements of thousand-grain weight. 

 
Figure 6.  YOLOV5 counting and detecting result. 

 

 
Figure 7. YOLOv5 + transformer detecting and counting results. 

 

 

 

 
Figure 8. Assessing the efficacy of several YOLOv5s modules in 

identifying and counting highly sticky rice grains 

 
Figure 9. Result of YOLOv5 with different modules 

B. Various detection model comparison 
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In order to assess the accuracy of the proposed model in detecting 

objects, a comprehensive comparison was conducted with four 

other widely recognised detection models: Faster R-CNN [29], 

SSD [30], EfficientDet [31], and YOLOv7 [32]. The experiment 

utilised the same dataset, loss function, and evaluation measures 

as previously defined in order to maintain consistency. Table 2 

presents the detection capabilities of the different models. The 

findings presented in Table 2 showcase the remarkable efficacy of 

the proposed model in comparison to the other four models in the 

domain of rice grain detection. The suggested model exhibited 

superior performance compared to Faster R-CNN in terms of 

precision, recall, mAP@0.5, and mAP@0.5:0.9. EfficientDet 

exhibited marginally higher precision and mAP@0.5:0.9, but its 

other two evaluation metrics were somewhat worse. SSD 

exhibited superior performance in comparison to Faster R-CNN 

and EfficientDet, albeit with somewhat lower mAP@0.5 and 

mAP@0.5:0.9 values. The performance of YOLOv7 was 

commendable, however it fell short compared to the proposed 

model, particularly in terms of mAP@0.5:0.9. 

The visual comparisons depicted in Figure 10,11,12 and 13 offer 

a distinct illustration of the detection outcomes attained by the five 

algorithms. The graphics in the first, second, and third columns 

depict the ultimate predicted outcomes for grains with varying 

degrees of adhesion in each model. The TCLE-YOLO model 

exhibited its competence in precisely recognising and enumerating 

rice grains with varying levels of adhesion. This demonstrates the 

ability of the YOLOv5 backbone module to gather information on 

rice grains with different levels of stickiness, thanks to the 

inclusion of the channel attention mechanism. The suggested 

model's detection head prioritises the utilisation of a high-

resolution feature map created by the transformer encoder at a low 

level. This method has significantly enhanced the process of 

identifying important characteristics, leading to a greater ability to 

detect grains that are very sticky. However, it was observed that 

the Faster R-CNN, EfficientDet, SSD, and YOLOv7 models were 

not sufficiently adaptable to extremely sticky grains. These 

models exhibited erroneous identifications and failed to detect 

certain instances, as evidenced by Figure 13c. The TCLE–YOLO 

model exhibited greater performance in comparison to other 

models, delivering a more accurate prediction of the actual 

quantity of rice grains. 

 
Figure 10. Faster RCNN test Result 

 

 

 

 

 

 
Figure 11. Efficient Net test Result 

 
Figure 12. SSD test Result 

 
Figure 13. TCLE-YOLO test Result 

 

IV. DISCUSSION 

Precise determination of the thousand-grain weight of rice is 

crucial for estimating yields, assessing cultivation techniques, and 

offering vital assistance for rice research. Precisely identifying and 

tallying rice grains can be a difficult task because of their 

diminutive size, limited clarity, and inconsistent levels of 

stickiness. We present a refined version of the YOLOv5 model 

that integrates an attention mechanism and an extra detecting head 

specifically designed for small targets. Our experiments yielded 

enhanced accuracy and recall metrics. Despite generating 

generally good findings, there were several cases where a few 

detections and counts were missed due to considerable occlusion 

between rice grains. 

To address the issues we have in our prospective projects, our goal 

is to create an advanced picture acquisition platform that integrates 

two top-notch cameras and an automatic motion system. The 

purpose of this platform is to simplify the process of acquiring 

accurate images and resolving occlusion issues by utilising 

binocular cameras and multi-view imaging techniques. In 

addition, our research entailed utilising a dataset that we curated 

internally. In the future, our main focus will be on enhancing the 
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model's capacity to be applicable to a broader spectrum of 

situations. We want to create a hardware platform specifically 

designed for the detection and counting of grains. Our objective is 

to smoothly integrate an improved model into the device, allowing 

for its practical use in real-world scenarios. 

The model's advanced technology allows for its use to a wide 

range of small-seed cereals, beyond the limitation to only rice 

grains. This presents opportunities for detection and quantification 

in various other domains. This technology has the potential to 

completely transform agriculture processes by providing precise 

and automated grain detection. This tool can aid growers and 

breeders in estimating crop yields, assessing cultivation methods, 

and provide dependable data assistance for measuring phenotypes. 

 

V. CONCLUSION 

The TCLE-YOLO detection model, presented in our research, 

is built around an enhanced YOLOv5 framework. This model has 

been specifically engineered to precisely identify rice grains. In 

order to address problems associated with the incorrect detection 

of rice grains, particularly in cases where sticking together is a 

significant issue, YOLOv5 was improved by integrating an 

attention mechanism. In addition, a novel detection apparatus was 

specifically designed to identify and locate diminutive targets. The 

model underwent training, validation, and testing stages using a 

dataset specifically tailored for this purpose. The final test set 

yielded outstanding results, demonstrating great performance in 

terms of precision, recall, and mean average precision scores. The 

precision score attained a remarkable 99.20%, whereas the recall 

score reached 99.10%. With an IoU threshold of 0.5, the mean 

average precision achieved an exceptional performance of 

99.20%. In addition, the model exhibited an impressive mean 

average precision of 72.20% over IoU thresholds ranging from 0.5 

to 0.9. 

Furthermore, TCLE-YOLO exhibited outstanding performance 

in precisely recognising and quantifying rice grains with varying 

degrees of adhesion, surpassing other models such as Faster R-

CNN, EfficientDet, SSD, and YOLOv7. These studies showcase 

the effectiveness of the suggested approach in precisely 

identifying and measuring rice grains under different 

circumstances. The potential of this model for practical 

applications is vast, including the measurement of thousand-grain 

weight, the enhancement of rice breeding programmes, and the 

improvement of cultivation management. Future efforts will focus 

on enhancing the model's capacity to be applicable across diverse 

circumstances and extending its use to detect and measure 

different categories of small-seed grains. 
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