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                   Abstract 

  The fruit ripening process is delineated into distinct phases, each characterized by 

specific physiological and biochemical transitions that collectively dictate the 

nutritional profile and sensory attributes of the fruit. The intricacies of the ripening 

sequence are subjected to rigorous scrutiny to elucidate the determinants of fruit quality. 

Extensive research has been dedicated to deciphering the biochemical and molecular 

underpinnings governing the ripening cascade, a pursuit driven by the substantial 

economic and societal value attributed to this phase. Contemporary discoveries have 

challenged conventional paradigms of ripening initiation, revealing a more complex 

interplay wherein ethylene may be implicated in both climacteric and non-climacteric 

ripening processes. This chapter aggregates the latest insights on pivotal ripening 

transformations, spotlighting the modulation of ethylene synthesis, pigmentary 

evolution, and aroma compound generation. The manuscript encapsulates a review of 

the fundamental metabolic routes integral to fruit quality and proffers a critical analysis 

of molecular methodologies employed in ripening research. 

 

INTRODUCTION  

Fruits and fruit products are rich in an array of vitamins, minerals, and nutrients. 

They vary greatly across plant species in size, shape, texture, color, flavor, sensory 

(organoleptic) properties, and nutritional content. Fruits have evolved to attract animals 

for seed dispersal, exhibiting diverse features to facilitate this. The development of the 

seed-bearing part and the edible portion of fruits can be quite distinct. For example, 

strawberries and pineapples develop their fruit from the receptacle tissue, while 

tomatoes use ovary tissue. In citrus fruits, the ovary walls create structures holding juice 

sac locules. The physiological processes of fruit growth and maturation, along with the 

regulatory mechanisms of biochemical and molecular transformations during ripening, 

share similarities across different fruits and plants. Ripening involves significant 

changes in color, sugar levels, acidity, softening, texture, aroma and flavor compound 

synthesis, and increased susceptibility to physiological disorders. These variations 

demonstrate a broadly conserved regulatory system across species over evolutionary 

timeframes. The biochemistry of fruit ripening has been extensively documented in 

scientific literature, such as in the works of Paliyath and Murr (2006), Giovannoni 

(2004), Seymour et al. (1993), and Knee (2002). During ripening, there are pronounced 

alterations in biochemical pathways and molecular ripening processes. 
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REGULATION OF FRUIT RIPENING: THE ROLE OF ETHYLENE  

 

Ethylene is recognized as a pivotal hormone in fruit ripening, influencing various 

processes from ancient preservation methods to modern postharvest treatments like 

citrus degreening. The concept of climacteric ripening, introduced by Kidd and West 

in 1925, delineates fruits based on their ethylene production and respiration increase 

during ripening. Climacteric fruits exhibit a surge in both ethylene synthesis and 

respiration, often autocatalytically, while nonclimacteric fruits do not display 

significant changes in these parameters (Biale & Young, 1981). However, this 

classification is not absolute, as demonstrated by varying climacteric behaviors within 

plum types (Abdi et al., 1997), and nonclimacteric fruits may still respond to ethylene 

treatment. 

 

Ethylene's role extends to System 1 and System 2 pathways, where System 1 relates 

to basal ethylene production and System 2 to autocatalytic production during 

climacteric ripening (Yang, 1987). Ethylene biosynthesis involves the conversion of S-

adenosyl methionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC) by 

ACC synthase (ACS), followed by the conversion of ACC to ethylene by ACC oxidase 

(ACO) (Kende, 1993). Gene expression of ACS and ACO is tightly regulated, 

impacting ethylene levels during fruit development (Barry et al., 2007). Genetic 

modifications of these genes in various crops demonstrate the nuanced role ethylene 

plays in fruit maturation (Barry & Giovannoni, 2007; Matas et al., 2009). 

 

Ethylene perception and signal transduction are mediated by ethylene receptors, 

such as those in tomatoes, which belong to two subfamilies resembling histidine kinases 

(Klee, 2004). The expression of these receptors varies during ripening and stress 

responses, with some acting as negative regulators of ethylene signaling (Kevany et al., 

2007). Even in nonclimacteric fruits, ethylene influences ripening aspects like 

anthocyanin synthesis and carotenoid biosynthesis, albeit through different biochemical 

and molecular mechanisms (Goldschmidt et al., 1993; Chervin et al., 2004). 

 

Finally, studies on transgenic fruits with altered ethylene perception or synthesis, 

such as ACO-antisense melons, have revealed both ethylene-dependent and 

independent pathways in ripening, highlighting the hormone's selective role in 

regulating specific ripening events (Hadfield et al., 2000; Schaffer et al., 2007). 

 

In summary, while ethylene is a key ripening hormone, its role is complex and 

varies among different fruit types and ripening stages, with some processes being 

ethylene-independent. The classification into climacteric and nonclimacteric is useful 

but not definitive, as fruits can exhibit a spectrum of responses to ethylene. 

Top of Form 

 

 

CARBOHYDRATE METABOLISM  

 

     The biochemical transformations during fruit ontogeny are critical determinants of 

fruit quality attributes. In the initial stages of fruit development, plants utilize solar 

energy to assimilate inorganic carbon into organic molecules, a process central to 

photosynthesis. However, the reliance on photosynthesis for carbon allocation 

diminishes as the fruit progresses from growth to maturation. This is evidenced by the 
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reduction of chlorophyll (Chl) content, leading to a decline in the photosynthetic 

capacity of fruit tissues. The contribution of photosynthesis to the fruit's carbon 

economy is variable, accounting for approximately 5% to 15% in many fruit-bearing 

species (Fluenc, 2007). 

Carbon assimilated through photosynthesis is mainly transported as sucrose, which 

is converted from glycerate-1-phosphate. This transformation occurs in the leaves and 

bark before translocation to the fruit, where sucrose is often converted into starch for 

storage. However, sucrose is not typically the primary form of sugar transport within 

fruits due to the action of invertase, an enzyme that catalyzes its breakdown into glucose 

and fructose. Instead, sugar alcohols such as mannitol and sorbitol, prevalent in species 

like apples and olives, are the dominant carbohydrates for transport and storage 

functions within these fruits. 

A comprehensive overview of these crucial metabolic pathways and the carbon 

flux in fruit cells is depicted in Figure 2.2, illustrating the complex interplay between 

photosynthesis, carbon transport, and storage during fruit development. 

 

 
Fig. Pathway of carbohydrates metabolism in fruits 

 

 

   During the maturation of unripe fruits, starch, composed of amylose and amylopectin, 

is stored within plastids. As fruits approach ripeness, starch is hydrolyzed into reducing 

and non-reducing sugars such as glucose and fructose, facilitated by catabolic processes 

within the plastids before being transported to the cytoplasm. This increase in 

cytoplasmic sugar levels allows their entry into metabolic pathways. Sugars serve as 

substrates for respiration via glycolysis or as precursors for biosynthesis of amino acids, 

nucleic acids, and secondary metabolites, processes integral to maintaining cellular 
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homeostasis. These processes are further interconnected through the pentose phosphate 

pathway, which provides NADPH and pentose sugars for anabolic reactions (Figure 

2.2). 

During the development phase, fruit carbohydrate metabolism is geared towards 

biosynthesis, supported by glucose derived from photosynthesis. However, as fruits 

transition to a stage characterized by increased metabolic activity, known as the 

ripening climax, there is a metabolic shift towards catabolism to meet the high energy 

demand. This period is marked by a significant rise in respiration, especially in 

climacteric fruits, which necessitates an elevated energy input. Such fruits, including 

those with high oil content like avocados, mangoes, and bananas, are highly perishable 

post-harvest due to their respiratory demands. To extend their shelf life, controlled 

atmosphere storage techniques involving low oxygen, high carbon dioxide, and reduced 

temperatures have been employed. 

The distribution of metabolic intermediates between glycolysis, the pentose 

phosphate pathway, or starch and sucrose degradation pathways is dictated by the cell's 

requirements at various stages of growth and maturity. For example, variations in sugar 

content have been observed in citrus fruits, where clementine mandarins exhibit 

different sugar profiles in their tissues compared to their juice (Tadeo et al., 1987). 

Key enzymes involved in sucrose metabolism include invertases, sucrose 

synthases, and sucrose phosphate synthases. The balance of sucrose accumulation in 

the fruit is regulated by the interplay between sucrose synthesis and breakdown, 

influenced by the activities of these enzymes. Sucrose synthase plays a role in 

synthesizing respiratory substrates, while UDP-glucose is utilized in the synthesis of 

complex carbohydrates (Sung et al., 1988). Sucrose phosphate synthase activity 

increases as fruits develop and is crucial during ripening for sucrose synthesis in fruits 

like muskmelon, while its activity remains constant in tomatoes (Lingle & Dunlap, 

1987). 

In ripening fruits, the breakdown of starch leads to an increase in sucrose phosphate 

synthase activity, as observed in bananas and cucurbits (Cordenunsi & Lajolo, 1995; 

Irving et al., 1997). Transcriptional levels of sucrose phosphatase and synthase are also 

elevated in ripe citrus, although their enzymatic activities may decrease (Lowell et al., 

1989). During the early stages of fruit development, energy demands drive up sucrose 

synthase activity, which primarily acts as a sucrose-degrading enzyme (Cano-Medrano 

& Darnell, 1997). 

Ripening involves intense glycolytic activity, breaking down carbohydrates to 

generate the energy required for this process. Acetyl-CoA, produced through 

glycolysis, enters the citric acid cycle, which is reversed during fruit development to 

synthesize sugars from organic acids—a process termed gluconeogenesis. 

Additionally, the pentose phosphate pathway, which generates NADPH, and sugar 

phosphates derived from starch breakdown, can be balanced through irreversible 

reactions or reversible interconversions. This flexibility allows for the transfer of sugar 

phosphate intermediates between the pentose phosphate cycle and glycolysis, 

facilitating the formation of a NADPH pool essential for the functioning of the 

antioxidant enzyme system. 

Postharvest, low temperatures can induce anaerobic respiration in ripe fruits as 

mitochondrial electron transport is inhibited, preventing ATP generation via the citric 

acid cycle. Under such conditions, ATP may be generated through lactate 

dehydrogenase-mediated anaerobic respiration, converting pyruvate to lactate and 

regenerating NAD+ (Beaudry et al., 1989). 
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Specific sugars like d-mannoheptulose in avocado are predominant during fruit 

growth and are essential for respiration, but their levels decrease postharvest as oil 

accumulates (Liu et al., 1999). In bananas, the regulation of ATP-dependent 

phosphofructokinase channels carbon through glycolysis during the respiratory 

climacteric, initiated by starch degradation (Beaudry et al., 1989). 

Overall, carbohydrate metabolism during fruit development is linked to postharvest 

issues such as watercore in apples and pears, where sucrose accumulation is implicated 

in the disorder (Bowen & Watkins, 1997). Ethylene treatments, known to induce sugar 

accumulation in fruits like loquat, are thought to enhance fruit sink activity, 

highlighting the hormonal regulation of carbohydrate metabolism (Hirai, 1982). 

 

ORGANIC ACIDS  

Organic acids, notably malic and citric acids, contribute significantly to the sour 

taste in fruits and are essential for crop harvest timing due to their impact on consumer 

acceptance (Baldwin, 2002). These acids are predominant in fruits regardless of 

ripening conditions or agricultural practices, with malic acid found abundantly in apples 

and citric acid in citrus fruits (Sweetman et al., 2009). The interaction between malic 

acid and the perceived sweetness of sucrose differs from that of citric acid (Bonnans 

and Noble, 1993), and their antimicrobial properties are well documented. 

The Krebs cycle, a central metabolic pathway involving organic acids, is crucial 

for fruit ripening, with sugars serving as primary respiratory substrates (Tucker, 1993). 

Organic acids in the vacuole help maintain cell turgor, which is vital for fruit growth. 

Citric acid also protects plants from oxidative damage by chelating metals, and malic 

acid can signal fruit freshness (Guillet et al., 2002). 

As fruits mature, organic acid levels and pH undergo significant changes; young 

fruits are more acidic with a pH below 3, which gradually rises as sugars accumulate 

during ripening. Malic enzymes, which are either cytosolic and NADP-dependent or 

mitochondrial and NAD-dependent, facilitate the conversion of malic acid to pyruvate, 

allowing carbon to enter the Krebs cycle directly, bypassing glycolysis (Sweetman et 

al., 2009). 

Research has indicated that differences in malic acid content between apple 

genotypes do not correspond to variations in respiration rates or enzyme activity. In 

low-acid genotypes, reduced vacuolar storage capacity results in lower malic acid 

accumulation (Berüter, 2004). Malic acid levels also influence the allocation of 

assimilates to other cellular components, including carbohydrates, with implications for 

carbon metabolism pathways. 

Variations in citric acid levels have been noted between different fruits, such as 

peaches and citrus, with species-specific influences on organic acid metabolism during 

ripening. Notably, citric and malic acids in tomatoes degrade more slowly at low 

temperatures post-harvest (Davies and Hobson, 1981; Gomez et al., 2009). 

In apples, malic acid is the predominant organic acid and can decrease by up to half 

during ripening due to respiration. The enzymes phosphoenolpyruvate carboxylase 

(PEPC) and NAD-dependent malate dehydrogenase (NDM) are involved in its 

production (Blanke and Lenz, 1989). Metabolic interventions, such as ethanol 

biosynthesis inhibitors and transgenic apples with reduced ethylene production, have 

shown that malic acid metabolism is ethylene-dependent (Defilippi et al., 2004). 

Grape juice acidity is crucial for winemaking, prompting studies into malic acid 

metabolism in non-climacteric grape berries. During grape development, carbohydrate 

metabolism leads to malic acid accumulation with high PEPC activity, which 

diminishes as ripening commences (Ruffner et al., 1976; Diakou et al., 2000). 
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In citrus fruits, mandarin oranges, for instance, lose a significant portion of their 

citric acid during maturation, while malic acid levels remain stable. Gene expression 

studies have revealed changes in citric acid metabolism during ripening, including its 

role in the GABA shunt pathway (Cercos et al., 2006). 

Understanding oscillations in organic acid concentrations throughout fruit 

development requires integrating physiological models of the Krebs cycle, metabolite 

transport, and associated enzymes (Lobit et al., 2006; Wu et al., 2007). A 

comprehensive understanding of organic acid formation and degradation will 

necessitate diverse experimental approaches and high-throughput technologies. 

 

LIPID METABOLISM  

In fruit, lipids play a key role, either as structural components (components of cell 

biomembranes) or as storage components. Fats, diacyl and triacylglycerols, 

galactolipids, galactolipids, sterols, and wax are all part of the lipid family. Most of the 

biomembranes are composed of phospholipids, diacylglycerols, and sterols. 

Phospholipids include phosphatidylcholine and phosphatidylethanolamine. 

Membranes may include a range of other metabolites in addition to phosphatidic acid, 

free fatty acids, and diacylglycerol. Signal transmission in response to environmental 

stimuli is mediated by phosphatidic acid and various phosphorylated derivatives of 

phospholipids. 

 

Lipid Biosynthesis Fatty Acid and Glycerolipids Biosynthesis  

 

In the metabolic pathways of fat-storing fruits like avocados and olives, de novo 

fatty acid biosynthesis has been extensively studied. Acetyl-CoA, a central molecule in 

this process, is synthesized from a 6-carbon sugar precursor via the action of the enzyme 

pyruvate dehydrogenase located in plastids and mitochondria (Salas et al., 2000). This 

enzyme catalyzes the decarboxylation of pyruvate, yielding acetyl-CoA. 

Fatty acid synthesis is driven by two key enzymes: acetyl-CoA carboxylase, which 

produces malonyl-CoA, and fatty acid synthase, which orchestrates a series of 

elongation and condensation reactions. These reactions repetitively add two-carbon 

units to the growing fatty acid chain, predominantly yielding C16 and C18 fatty acids. 

The activity of acetyl-CoA carboxylase is a determinant for the proportion of these fatty 

acids. 

Desaturation processes, which introduce double bonds into the fatty acid chains, 

can occur within plastids or the endoplasmic reticulum. The level of polyunsaturation 

of the fatty acids is enhanced through these desaturation steps. Subsequently, in the 

endoplasmic reticulum, the Kennedy pathway is responsible for esterifying these fatty 

acids to glycerol backbones, forming glycerolipids (Salas et al., 2000). 

 

Storage Lipids  

The mesocarp tissue of avocados and olives contains cells known as idioblasts that 

specialize in lipid storage, predominantly in the form of triglycerides. These 

triglycerides are synthesized through a process where glycerophosphate is sequentially 

converted to phosphatidic acid and then to diglycerides (Kikuta & Eriksson, 1968). 

Lipid metabolism is essential for the proper maturation of these fruits, and lipid 

concentration increases progressively throughout their development and ripening. 

In the composition of the triglycerides within avocados, up to 95% of the total lipid 

content can be attributed to these molecules. The fatty acid composition of triglycerides 

in these fruits is primarily made up of four types: palmitic, palmitoleic, oleic, and 
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linoleic acids. As the fruit matures, the oil content increases and oleosomes—or oil 

bodies—aid in segregating different types of fats within the cells. 

While comprehensive molecular studies on lipid and fatty acid metabolism in fruit are 

limited, there has been research conducted on other fruits such as mangoes. 

Specifically, during the growth of mango fruit, there has been a noted increase in 

transcripts for thiolase, the final enzyme in the β-oxidation pathway of fatty acids, 

which is indicative of the active metabolism of lipids during fruit development 

(Bojorquez & Gomez-Lim, 1995). 

 

Membranes  
   Cellular membranes are critical hereditary structures that regulate the diffusion of 

water-soluble molecules. Composed principally of proteins and polar lipids, these 

membranes serve as barriers and platforms for cellular signaling. Lipids, particularly 

phospholipids, play a pivotal role in membrane architecture and function. Plant cells 

contain approximately 17 distinct membrane systems, each characterized by a unique 

lipid composition that varies between different organelles, tissues, and even among 

plant species. The diversity in lipid composition is crucial for the specialized functions 

of various membranes within the plant. 

The fluid-mosaic model, proposed by Singer and Nicholson in 1972, currently 

offers the most accepted explanation for membrane structure and fluidity. According to 

this model, a bilayer of phospholipids serves as a fluid matrix in which proteins are 

embedded, allowing for lateral movement within the membrane. The fluidity of the 

membrane is largely determined by the fatty acid composition of the phospholipids; 

membranes with a higher proportion of unsaturated acyl chains—such as oleic, linoleic, 

and linolenic acids—are more fluid. 

Membrane fluidity is vital for maintaining cellular homeostasis and the 

functionality of organelles. Surrounding membrane receptors, phospholipids not only 

contribute to structural integrity but also participate in signal transduction. Upon 

stimulation of a receptor, specific enzymes can catalyze the conversion of 

phospholipids into signaling molecules, a process that is integral to plant responses to 

various stimuli, including stress responses (Meijer & Munnik, 2003). 

Wax Synthesis and Deposition  

Plant cuticles, composed largely of waxes, serve as the primary barrier for gas and 

water exchange. The formation of epicuticular layers involves the deposition or 

embedding of waxes into the cutin matrix, a polymer that is integral to the cuticle 

structure. Waxes are primarily made up of long-chain fatty acids, which are synthesized 

through the action of elongases. These enzymes extend the chains by successively 

adding two-carbon units, typically starting from C16 and C18 acyl-CoAs (Mintz-Oron 

et al., 2008). 

During fruit development and ripening, the composition of waxes on the fruit surface 

changes. Both biosynthesis and deposition of waxes are accelerated in the initial stages 

of fruit development. It has been observed that the expression of genes related to wax 

production and the accumulation of wax metabolites peak early in the ripening process 

and diminish as the fruit reaches maturity (Baker, 1982; Mintz-Oron et al., 2008). 

 

Lipid Metabolism in Fruit During Ripening and Senescence: Postharvest Changes  

The maturation and ripening of fruit involve complex biochemical changes, 

particularly in their cellular structures. During this phase, there's an increase in ion 

leakage and calcium permeability in cells. These changes trigger the activation of 

phospholipase D (PLD), especially under conditions of low pH and high calcium 
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concentrations, exceeding 10 µM. The activation of PLD is a response to alterations in 

the cell's ionic environment during fruit senescence. This stage is also marked by 

decreased membrane fluidity due to changes in lipid composition. Such alterations are 

more pronounced when fruits are still attached to the plant. A significant aspect of these 

changes is the increased concentration of sterols in the lipid bilayer, a factor associated 

with the onset of senescence (Fuh et al., 1988). 

After harvest, fruits experience a reduction in photosynthetic activity, 

disorganization of chloroplasts, and degradation of proteins, nucleic acids, and lipids. 

The aging of cell membranes leads to increased acidity, altering phosphatidylinositol 

levels. Membrane integrity is further compromised by the heightened activities of 

lipoxygenase (LOX) and lipid peroxidation, contributing to water loss and diminished 

quality. In watermelon, post-harvest water soaking disorder is linked to increased 

activities of phospholipase C (PLC), PLD, and LOX. This disorder is characterized by 

reduced levels of phosphatidylcholine and phosphatidylinositol, but increased 

phosphatidic acid (PA). Even with treatment by 1-MCP, PLC and LOX activities are 

not completely inhibited in watermelons not exposed to ethylene (Mao et al., 2004). 

Studies in citrus fruits indicate that the development of such disorders involves the 

oxylipin cascade, independent of ethylene signaling (Alférez et al., 2006). 

Nutrient uptake during crop growth, particularly phosphorus (P), is crucial for 

maintaining membrane integrity post-harvest. P is a key component of phospholipid 

structure. In seedless cucumbers, the levels of phosphatidylcholine and 

phosphatidylethanolamine correlate with P fertilization. Insufficient P nutrition is 

associated with a decrease in total fatty acids and increased electrolyte leakage 

(Knowles et al., 2001). Under P deficiency, plants may substitute galactoglycerolipids 

for phospholipids in extraplastidic membranes (Andersson et al., 2003). 

Post-harvest storage conditions can influence phospholipid profiles. The three 

phospholipase families (PLA, PLC, and PLD) play roles in responding to biotic and 

abiotic stresses. These enzymes are further divided into subfamilies based on sequence 

and biochemical properties. For example, PLA2 acts at the sn-2 position of 

phospholipids, producing lysophospholipids and free fatty acids, including the release 

of fatty acids from galactolipids in the chloroplast membrane (Matos et al., 2001). LOX 

enzymes oxidize polyunsaturated fatty acids like linolenic acid to form 

hydroperoxylinolenic acids. These acids are precursors in metabolic pathways leading 

to the production of jasmonates in peroxisomes (Blee, 1998; Dhondt et al., 2000). These 

oxylipins are believed to play a significant role in the post-harvest senescence of fruits 

and vegetables (Howe & Schilmiller, 2002; Zhuang et al., 1994). 

 

PIGMENTS IN FRUITS  

Pigments are molecules containing chromophores that absorb specific wavelengths 

of visible light, conferring color. Chlorophylls (Chls) are predominantly green, 

carotenoids range from yellow to red, and anthocyanins display red, blue, and violet, 

constituting the primary natural pigments. Secondary pigment classes like betalains and 

quinones, encompassing betalain, phenalone, and phyrone, are also present but less 

emphasized (Gross, 1987). These pigments not only contribute to the aesthetic quality 

of fruits, influencing seed dispersal by attracting insects and animals but have also been 

recognized for their functional roles. They exhibit antioxidant properties, safeguarding 

DNA, proteins, and lipids against oxidative damage. From a market perspective, 

pigments are critical as they determine the visual attractiveness of fruits, influencing 

consumer acceptance (Gross, 1987). 
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Recent research attributes significant health benefits to pigments, such as 

carotenoids and anthocyanins, highlighting their role in preventing cardiovascular 

diseases and various cancers (Duthie et al., 2000; Rao and Rao, 2007). The pigment 

profile of a fruit, including its concentration and composition, is highly variable among 

different genera, species, and cultivars and is influenced by environmental and 

agronomic factors (Gross, 1987; Goldschmidt, 1988; De Pascual-Teresa and Sanchez-

Ballesta, 2008). Postharvest processing and storage conditions can further modify 

pigment levels and composition. 

Decades of research have led to the identification of genes encoding enzymes 

responsible for the biosynthesis of Chls, anthocyanins, and carotenoids, along with the 

regulatory mechanisms controlling their expression during fruit ripening and 

development. 

 

Chlorophylls  

 

    The green pigment chlorophyll is characterized by porphyrins, which have strong 

absorption in the blue and red wavelengths of light. The biosynthetic pathway of 

chlorophyll from glutamic acid involves over a dozen enzymes, and recent advances 

have provided revisions to this complex process (Eckhardt et al., 2004; Tanaka and 

Tanaka, 2006; Masuda, 2008). Chlorophyll degradation, a pivotal chemical 

transformation during the ripening of most fruits and vegetables, results in a loss of 

green coloration known as degreening. Recent research has elucidated the fundamental 

steps and associated genes in the catabolic pathway of chlorophyll breakdown 

(Hortensteiner, 2006; Hortensteiner and Kräutler, 2011). 

   During the green stages of fruit development, chlorophyll content increases, 

correlating with chloroplast integrity, but as the fruit matures, chlorophyll levels 

decline, revealing other pigments and often resulting in the development of new 

pigments that change the fruit's color. However, some fruits such as certain cultivars of 

apples, pears, figs, plums, limes, avocados, and kiwis display an atypical ripening 

process, retaining moderate levels of non-chlorophyll pigments at maturity. "Stay-

green" mutations result in these fruits failing to develop additional pigments, leading to 

a brownish hue at full ripeness. These mutations are categorized into three classes. 

Classes A and B display chlorophyll degradation but at a reduced rate or with delayed 

initiation. Class C mutants are deficient in at least one step of the degradation pathway 

(Matile et al., 1999). 

Anthocyanins  

    Anthocyanins, a class of water-soluble flavonoids, are synthesized in the cytoplasm 

and sequestered in vacuoles, where their structure and color manifestation are 

influenced by intracellular pH variations. These molecules are structurally 

characterized by the presence of at least one sugar moiety attached at various points on 

their C15 skeleton, particularly on the second chromane ring. The biosynthetic 

pathways of anthocyanins are well-elucidated, with key enzymes identified and their 

gene expression patterns analyzed across tissues and developmental stages (Grotewold, 

2006; Davies, 2009; Hichri et al., 2011). 

    Anthocyanin biosynthesis is facilitated by two gene types: structural genes encoding 

the enzymes directly involved in pigment production, and regulatory genes, particularly 

transcription factors that modulate the expression of structural genes. It is hypothesized 

that protein-protein interactions contribute to the formation of a metabolon, a complex 

of enzymes associated with the endoplasmic reticulum membrane, for efficient 
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synthesis (Ben-Yehuda et al., 2005; Jaakola et al., 2002; Jaakola et al., 2010; Niu et al., 

2010; Lo Piero et al., 2005; Boss and Davies, 2009). 

    The MYB-bHLH-WD40 (MBW) protein complex has been implicated in the 

regulation of anthocyanin biosynthesis genes. WD40 proteins are believed to stabilize 

protein interactions, while MYB and bHLH proteins are involved in DNA binding and 

protein complex formation. MYB transcription factors, in particular, are influential in 

fruit anthocyanin accumulation, acting as inducers or repressors. The trans-activation 

efficiency of MYB proteins, their DNA-binding specificity, and interaction dynamics 

are determined by critical residues in the N-terminal region, while the functional 

significance of consensus motifs in the C-terminal region remains under investigation 

(Espley et al., 2009). 

    Color variations in fruits such as grapes have been associated with transposable 

elements affecting the stability of transcription factor genes. The primary 

anthocyanidins responsible for coloration are cyanidin, peonidin, pelargonidin, 

delphinidin, petunidin, and malvidin, which confer orange, pink, red, purple, mauve, 

and blue hues respectively. The diversity of anthocyanins is further amplified by 

species-specific modifications including acyl moieties and glycosylation, methylation, 

and coumarylation processes. Copigmentation, a mechanism involving flavones, alters 

the hue of anthocyanin pigments (Gross, 1987). 

    In some cultivars with high anthocyanin content, pigments are predominantly 

deposited in the skin and subepidermal cells, although other tissues may also contain 

pigments. For example, pomegranates and peaches exhibit anthocyanin accumulation 

around the seeds, while blood oranges have concentrations in the flesh. Cyanidin is the 

most prevalent aglycone in fruits, found in 90% of common fruits and 82% of 

angiosperm species fruits (Macheix et al., 1990). Cyanidin-3-glucoside is commonly 

found across fruits, while malvidin glucosides are notably present in red grape varieties.    

The anthocyanin profiles can range from simple, as in passion fruit, to complex, as seen 

in some grape and orange cultivars with over 20 different anthocyanins (Kidoy et al., 

1997). Anthocyanin accumulation intensifies during fruit ripening, culminating at full 

maturity where the variety of anthocyanidins and glycosylation patterns become more 

intricate. Red berries and grapes are primary dietary sources of anthocyanins, providing 

approximately 0.25 mg per gram of fresh weight (Gross, 1987). 

 

Carotenoids  

 

    Carotenoids are a diverse group of approximately 700 lipophilic compounds, giving 

fruits and vegetables their red, orange, and yellow colors, residing within plastids in 

association with lipid-protein complexes due to their hydrophobic nature. These 

molecules are typically composed of forty carbon atoms arranged in a polyene chain 

with up to fifteen conjugated double bonds, derived from eight isoprenoid units with an 

inverted arrangement at the molecule's midpoint. Carotenoids are categorized into 

carotenes, which are purely hydrocarbons, and xanthophylls, which are oxygenated 

derivatives of carotenes. 

Diverse structural modifications such as hydrogenation, dehydrogenation, 

cyclization, oxygenation, bond migration, methylation, and chain length alterations 

give rise to various carotenoids, including lycopene derivatives. Biosynthesis of 

carotenoids begins with the formation of phytoene, a colorless compound, in the 

plastids via the methylerythritol phosphate (MEP) pathway from the C5 precursor 

isopentenyl diphosphate. Progress in gene isolation over the past decade has illuminated 
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the biosynthetic pathways and key regulatory controls of carotenoid formation (Fraser 

and Bramley, 2004). 

The synthesis involves the coordination of structural genes and regulatory 

mechanisms, including chromoplast-specific enzyme variants, suggesting a specialized 

chromoplast-centric pathway for carotenoid biosynthesis, as observed in citrus, papaya, 

and other fruits (Galpaz et al., 2006; Alquézar et al., 2009; Devitt et al., 2010). 

Carotenoid biosynthesis is primarily regulated at the transcriptional level, with a strong 

correlation between the expression of critical genes, such as phytoene synthase (PSY), 

and the carotenoid content in fruits like citrus (Rodrigo et al., 2004; Bramley, 2002). 

Additional regulatory mechanisms include the orange (or) gene in cauliflower, which 

affects plastid differentiation and -carotene accumulation (Li et al., 2001). The 

sequestration capacity of plastids, the presence of binding proteins, and the 

esterification of hydroxycarotenoids are also known to influence carotenoid levels 

(Egea et al., 2010). 

Although several genes and proteins associated with carotenoid biosynthesis and 

storage have been identified, the specific mechanisms that control carotenoid 

accumulation and degradation in fruit remain incompletely understood. Carotenoid 

profiles shift during fruit ripening into distinct patterns. For instance, in fruits like 

tomatoes with high carotenoid accumulation, levels increase during ripening, while in 

fruits such as berries or grapes, which rely on pigments other than carotenoids, levels 

may decrease (Gross, 1987). 

Chloroplastic carotenoids, including lutein, carotene, neoxanthin, and zeaxanthin, 

are associated with chlorophyll-binding proteins during the early and green stages of 

fruit development. Upon maturation, chromoplasts in ripened, non-green fruits amass 

significant amounts of carotenoid compounds, yet the content and composition vary 

widely. While carotenogenic fruits exhibit pigmentation throughout their tissues, the 

outer pericarp is typically the most pigmented, although carotenoid profiles can differ 

within the same fruit (Gross, 1987). For instance, in red-fleshed grapefruit varieties, the 

flesh contains higher levels of the red carotene lycopene compared to the peel, which 

may accumulate only trace amounts of colorless carotenes (Alquézar et al., 2009). 

In addition to the primary carotenoids, fruits may contain various minor 

carotenoids in trace or very low concentrations. Goodwin and Britton (1988) identified 

eight major patterns of carotenoid distribution across different fruits and vegetables, 

ranging from minimal amounts in fruits like grapes, to complex assortments featuring 

lycopene and -carotene, epoxides, and unique or species-specific carotenoids like lutein 

and zeaxanthin, with certain fruits displaying a combination of these patterns. 

VOLATILE AROMA COMPOUNDS  

 

    Fruit flavor, a key determinant of fruit quality, can be modified through selective 

breeding, with flavor being a subjective experience influenced by a complex interplay 

of metabolites such as sugars, organic acids, and volatile aroma compounds (Klee, 

2010; Baldwin, 2002). This discussion will focus on the biochemistry of major aroma 

compounds, as detailed sensory aspects of fruit flavor are covered in Chapter 3. Fruit 

aroma arises from a broad spectrum of volatile compounds present at minute 

concentrations, with a subset of 10-20 volatiles predominantly defining the aroma 

profile of ripened fruits (Schieberle & Hofmann, 1997; Baldwin et al., 2000). 

Terpenoids, along with aliphatic and branched esters, and short-chain aldehydes 

and alcohols, form the core volatile components in fruits. Additionally, apocarotenoids 

and furan-related compounds significantly contribute to aroma. Volatile compounds, 

due to their diverse nature, originate from various biosynthetic pathways involving 
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different cellular compartments and organelles. Terpenoids, composed of acetyl-CoA 

and pyruvate, represent a substantial portion of fruit fragrance molecules. Various 

prenyl transferases and terpene synthases (TPS) catalyze the synthesis of isoprenoids 

(C5), monoterpenes (C10), and diterpenes (C20) in the cytosol and plastids (Dudareva 

et al., 2004). The multiproduct nature of TPS enzymes accounts for the vast diversity 

of terpenes observed in nature (Degenhardt et al., 2009). 

Citrus fruits are exemplary in their significant terpenoid content, with specific 

cellular localization of terpene synthesis. Terpenoid composition in citrus is influenced 

by species, variety, fruit tissue, and ripening stage, with the monoterpene limonene 

dominating the essential oils' volatile profile, followed by various minor monoterpenes 

and sesquiterpenes (Weiss, 1997; Sawamura, 2000). Recent studies have characterized 

numerous TPS and their association with limonene accumulation in citrus peels (Lucker 

et al., 2002; Shimada et al., 2005a). Bioinformatics analysis of citrus fruit EST 

databases has revealed potential gene clusters for TPS, which may account for the 

diversity of terpenes in citrus (Takita et al., 2007). 

Citrus juices contain a distinct volatile profile from peels, with various aliphatic 

esters, aldehydes, and alcohols contributing to their aroma. Other fruits, such as 

strawberries, also exhibit significant terpene profiles affecting their scent (Aharoni et 

al., 2004). In grapes and apples, TPS enzymes are responsible for the production of 

aromatics like valencene and germacrene D, with their expression patterns linked to 

fruit development stages (Lucker et al., 2004; Martin & Bohlmann, 2009). 

The biosynthesis of C6 and C9 aldehydes and alcohols involves multiple enzymes, 

including lipoxygenases (LOX), hydroperoxide lyases (HPL), and alcohol 

dehydrogenases (ADH), with tomato LOX genes demonstrating varied expression 

during ripening (Chen et al., 2004). Aliphatic esters, synthesized from oxidized lipids 

and further processed by AAT enzymes, are pivotal in enhancing fruit aromas (Olias et 

al., 2002; Beekwilder et al., 2004; Defilippi et al., 2005a). Ethylene plays a significant 

role in the modulation of aldehyde and fatty acid reduction and ester biosynthesis in 

fruits like apples (Flores et al., 2002). 

Branched-chain aldehydes, alcohols, and esters, derived from amino acids, impart 

characteristic fruity aromas, such as banana and strawberry (Dudareva et al., 2006). The 

esterification of branched-chain alcohols, as observed in bananas and apples, is 

mediated by specific AATs and aminotransferases (Schaffer et al., 2007; Gonda et al., 

2010). 

Apocarotenoids, also known as norisoprenoids, contribute to fruit aroma with their 

distinct flavor characteristics and low odor thresholds. The cleavage of carotenoids by 

carotenoid cleavage dioxygenases (CCD) leads to the production of volatile 

apocarotenoids, which are significant in fruits like tomatoes, melons, and grapes 

(Simkin et al., 2004; Ibdah et al., 2006; Aubert et al., 2003). 

Finally, the generation of furanones and pyrones, which impart unique scents to 

fruits such as pineapple and strawberry, involves specific metabolic pathways, although 

the complete biosynthetic steps are not fully elucidated (Bood & Zabetakis, 2002; Wein 

et al., 2001). These compounds arise from complex transformations that involve 

enzymes like enone oxidoreductases and O-methyltransferases. 

 

OTHER COMPONENTS  

    Fruits are repositories of a multitude of phytochemicals, enzymes, minerals, dietary 

fibers, and other bioactive molecules alongside essential nutrients. Phytochemicals, a 

diverse group of compounds with antiviral, antibacterial, and antioxidant properties, are 

crucial for scavenging free radicals and thus impacting biological systems including 
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immune response, lipid and steroid hormone metabolism, and blood pressure regulation 

(Jongen, 2002). Due to the absence of these phytochemicals in the human body, dietary 

intake from fruits becomes essential for health. 

 

Current research indicates that the health benefits of fruits may also arise from the 

synergistic interactions among their various components. Factors influencing the 

concentration of these bioactive compounds in fruits include fertility of the soil, 

irrigation practices, maturity at harvest, harvesting techniques, and postharvest 

handling. Consequently, reported levels of these compounds can vary significantly, 

leading to potential discrepancies in published data. This variability underscores the 

importance of considering agricultural and postharvest factors when evaluating the 

nutritional and health benefits of fruits. 

 

Vitamins  

    Vitamins are essential biochemical compounds required in small quantities for 

proper physiological function. The antioxidant vitamins, A, C, and E, are of particular 

interest due to their potential roles in preventing heart disease and cancer. Vitamin A, 

as retinol, is vital for reproduction, vision, and immune response. Dietary sources of 

vitamin A include preformed vitamin A from animal products and carotenoids from 

plant-based foods, with the latter being less likely to cause hypervitaminosis due to their 

lower toxicity. Vitamin A is measured in retinol equivalents (RE), with recommended 

daily allowances ranging from 210 µg/day for infants to 800 µg/day for lactating 

women. Among the carotenoids, only about 50 exhibit provitamin A activity, the most 

significant being β-carotene, α-carotene, and β-cryptoxanthin (with half the provitamin 

A activity of β-carotene). Fruits like strawberries and pineapple are poor in provitamin 

A due to low β-carotene content. 

 

    The vitamin B complex comprises essential vitamins including B1 (thiamine), B2 

(riboflavin), B3 (niacin), B5 (pantothenic acid), B6, B9 (folate), and B12, although B12 

is not present in fruits. Commonly found B vitamins in fruits include thiamine, 

riboflavin, niacin, and pantothenic acid, with fruits like avocado, orange, and pineapple 

containing them in varying amounts. Folate, crucial for nucleic acid and amino acid 

metabolism, has recommended intakes varying with pregnancy stages, from 65 µg/day 

to 520 µg/day of dietary folate equivalents. Avocado is a folate-rich fruit that 

contributes significantly to dietary needs. 

 

    Vitamin C exists as ascorbate and its oxidation product, dehydroascorbic acid. Rich 

sources include citrus fruits, kiwis, plums, and raspberries, with acerola having the 

highest ascorbic acid content among studied fruits (16.77 mg/g fresh weight). Vitamin 

E, comprising tocopherols and tocotrienols, is crucial nutritionally, especially α-

tocopherol due to its high vitamin E activity. However, vitamin E levels in fruits are 

generally low. 

 

    Vitamin K exists primarily as phylloquinone (vitamin K1), with fruits like avocado, 

kiwi, papaya, and blackberries being good sources. These fruits contribute to the intake 

of vitamin K1, which is prevalent in various berries. 
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Table 2.1 

   Vitamin        

 A B1 B2 B3 B5 B6 B9 C E K 

Avocado 7.0 0.07 0.13 1.74 1.39 0.26 81.0 8818.34 0.10 0.05 
Banana 3.0 0.03 0.07 0.67 0.33 0.37 20.0 8733.33 0.10 0.05 
Apricot 96 0.03 0.04 0.60 0.24 0.05 8.57 10,000.00 0.89 3.43 
Kiwi (green) 4.0 0.03 0.03 0.34 0.18 0.06 25.0 92,763.16 1.46 40.26 
Tangerines 34 0.06 0.04 0.38 0.22 0.08 16.0 26,700 0.20 0.00 
Blackberries 11 0.02 0.03 0.65 0.28 0.03 25.0 20,972.22 1.17 19.79 
Papaya 55 0.02 0.03 0.36 0.19 0.04 38.1 61,809.21 0.73 2.60 
Mango 54 0.03 0.04 0.67 0.20 0.12 43.0 36,400 0.90 4.20 
Plum 17 0.03 0.03 0.42 0.13 0.03 5.00 9545.45 0.26 6.36 
Oranges 11 0.09 0.04 0.28 0.25 0.06 30.0 53,222.22 0.18 0.00 
Squash 10 0.05 0.14 0.49 0.16 0.22 29.2 16,991.15 0.12 3.01 
Tomato 42 0.04 0.02 0.59 0.09 0.08 15.0 13,700 0.54 7.90 
Strawberry 1.0 0.20 0.02 0.39 0.13 0.05 24.1 58,795.18 0.28 2.22 
Pineapple 3.0 0.08 0.03 0.50 0.21 0.11 18.0 47,806.45 0.02 0.71 

 

 

 

Fiber  

    Dietary fiber encompasses a variety of indigestible plant components, with its 

composition differing across food types. The gelation properties of fruit fibers can 

contribute to a feeling of fullness. Soluble fibers are known to inhibit digestive 

enzymes, facilitating enhanced nutrient absorption. Both soluble and insoluble fibers 

are important for maintaining intestinal health and have been associated with a reduced 

risk of heart disease and breast cancer by modulating the flow of lipids, bile acids, and 

hormones from the gastrointestinal tract to the liver. Due to the distinct physiological 

effects of different fiber types, the daily intake necessary to achieve specific health 

outcomes can vary. Fruits such as avocados, blackberries, kiwis, and bananas, as well 

as apples and pears when consumed with their skin, are recognized as being high in 

dietary fiber. 

 

 

Minerals  
    Minerals serve multifaceted roles within the human body. Magnesium and calcium are 

crucial as both cofactors in myriad enzymatic reactions and as structural elements that enhance 

bone density and integrity. Bananas are particularly noted for their high potassium content, 

which is significantly greater in comparison to many other fruits (refer to specific data in Table 

2.2). Fruits also provide substantial amounts of calcium, magnesium, and phosphorus, all of 

which are integral to nucleic acid formation and cellular function. 

Trace minerals, including manganese (Mn), zinc (Zn), iron (Fe), copper (Cu), and 

sodium (Na), are present in fruits in smaller quantities but are essential for various 

biological functions. However, the bioavailability of some minerals in fruits can be 

limited. For instance, non-heme iron, which is the form of iron found in plant sources 

including fruits, and calcium that is bound to oxalates, a form in which it can be present 

in certain fruits, may not be fully absorbable by the body due to the presence of 

compounds that inhibit their absorption. 
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Table 2.2  

   Minerals        

 Dietary 
Fiber 

Ca Fe Mg P K Na Zn Cu Mn 

Avocado 6.80 13 0.61 29 54 507 8 0.68 0.17 0.15 
Banana 2.60 5 0.26 27 22 3358 1 0.15 0.08 0.27 
Apricot 2.00 13 0.39 10 23 259 1 0.20 0.08 0.08 
Kiwi (green) 3.00 34 0.31 17 34 312 3 0.14 0.13 0.10 
Tangerines 1.80 37 0.15 12 20 166 2 0.07 0.42 0.04 
Blackberries 5.30 29 0.63 20 22 162 1 0.53 0.17 0.65 
Papaya 1.88 24 0.10 10 5.0 257 3 0.07 0.02 0.00 
Mango 1.60 11 0.16 10 17 186 1 0.09 0.11 0.06 
Plum 1.40 6 0.17 7.0 16 157 0 0.10 0.06 0.05 
Oranges 2.40 40 0.10 10 14 181 0 0.07 0.05 0.03 
Squash 1.10 15 0.35 17 38 262 2 0.29 0.05 0.18 
Tomato 1.20 10 0.27 11 24 237 5 0.17 0.06 0.11 
Strawberry 2.00 16 0.41 13 24 153 1 0.14 0.05 0.39 

Pineapple 1.40 13 0.29 12 8 109 1 0.12 0.11 0.93 
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