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Abstract- The present manuscript explores the complex domain of 

distributed task allocation, with a specific  emphasis on optimizing 

the number of successfully completed tasks in multirobot systems. 

The inherent challenges arise due to the temporal limitations 

imposed by task deadlines and the restricted fuel capacities of 

robotic vehicles, often resulting in the unattainability of 

successfully completing all tasks. In this proposal, we present a 

groundbreaking paradigm that introduces the Effective and 

Efficient Performance Impact (EEPI) algorithm. This algorithm 

stands out due to its unique cost function and task release 

methodology, which contribute to its effectiveness and efficiency. 

The fundamental principles underlying the proposed cost function 

are centered on two pivotal tenets. The primary objective of this 

approach is to reduce the duration of travel required for each 

vehicle to reach their assigned task locations. This optimization is 

strategically designed to maximize the available time for task 

execution, taking into consideration the limited fuel resources at 

hand. Additionally, this approach guarantees the prompt 

commencement of each task in close proximity to its designated 

deadline, thereby facilitating the efficient prioritization of tasks 

with earlier deadlines over those with later deadlines. In order to 

address the challenges pertaining to the impacts on removal 

performance and inclusion performance, a strategy is proposed 

wherein tasks assigned to a vehicle are collectively released if said 

vehicle has achieved the highest task removal count during the 

task removal phase. The implementation of this strategic approach 

effectively enhances the overall quantity of tasks that are executed 

successfully. The effectiveness of the proposed Energy-Efficient 

Power Injection (EEPI) algorithm has been thoroughly validated 

through a combination of comprehensive simulations and real-

world hardware-in-the-loop experiments. The effectiveness of the 

proposed distributed task allocation algorithm in maximizing task 

execution and its efficiency in reducing the number of iterations 

and convergence time have been substantiated through 

comparative analyses against state-of-the-art algorithms. 

 

Index Terms- Task allocation, Distributed algorithm, hardware in 

loop experiment, multirobot system. 

 

I. INTRODUCTION 

ver the past few decades, there has been a substantial rise in 

the use of multirobot systems in many industries, 

encompassing both civilian and military domains [1]. The 

utilization of these technologies covers a wide spectrum, including 

the monitoring of moving objects [2], investigation of particular 

regions [3], search and rescue missions [4], and endeavors 

associated with disaster assistance [5]. Efficiently integrating and 

coordinating various autonomous robotic vehicles is essential for 

achieving higher levels of effectiveness and efficiency [6]. The 

main challenge faced in implementing cooperative multirobot 

systems for practical purposes relates to the domain of task 

allocation. The goal of task allocation is to efficiently coordinate 

vehicles to perform tasks and achieve one or more global 

objectives [7]. 

 The categorization of multirobot systems can be roughly 

divided into two primary classifications: centralized systems and 

distributed systems, which are differentiated by their distinct 

organisational paradigms [8]. Centralized systems employ a server 

to efficiently gather and merge diverse types of information, such 

as situational awareness (SA), from numerous vehicles. The server 

utilizes centralized algorithms [9], to create a detailed job 

allocation plan for the entire fleet. The suggested methodology 

seeks to reduce the computing and communication demands 

placed on individual vehicles, hence improving their compactness 

and cost-effectiveness. Nevertheless, achieving a globally uniform 

understanding of the current situation (situational awareness) in 

real-world scenarios is difficult due to the existence of 

unpredictable changes and restricted communication capacities. 

These parameters directly affect the system's mission range and 

overall durability. 

However, it is important to acknowledge that there has 

been substantial advancement in the domain of distributed 

multirobot systems and the corresponding methodologies for 

allocating tasks. The purpose of these developments is to enhance 

the overall mission range and durability of such systems [10], [11]. 

Auction approaches have demonstrated efficacy in resolving 

single-task allocation difficulties, when each vehicle is assigned a 

solitary task [12]. These techniques include cars putting separate 

bids for tasks, and then an auctioneer decides the winning bidder 

O 
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for each work. Within the domain of multi-task allocation, 

scholars have suggested the implementation of combinatorial 

auction techniques. Nevertheless, it is important to acknowledge 

that these approaches are inefficient due to the exponential 

increase in the number of potential task combinations as the 

number of tasks grows. 

The consensus-based bundle algorithm (CBBA) [13] 

utilizes a systematic approach to address the challenges related to 

multi-task allocation. This approach incorporates repeated 

procedures of constructing bundles and reaching an agreement. 

However, the assignment of tasks becomes increasingly difficult 

as the proportion of tasks to vehicles grows. To address this 

difficulty, a new method called the Performance Impact (PI) 

algorithm was proposed as a potential approach to efficiently 

manage time constraints [14]. After the initial iterations, further 

improvements were made, including the implementation of PI-

softmax, in order to increase the efficiency of task execution [36]. 

However, it is important to mention that as the ratio of tasks to 

vehicles increases, both the Proportional-Integral (PI) and PI-

softmax techniques have significant restrictions. 

This research study introduces the Effective and Efficient 

Performance Impact (EEPI) method, which seeks to enhance task 

execution by maximizing the number of jobs performed 

effectively without requiring rescheduling. The current study 

includes several significant advances, specifically the creation of 

a novel cost function that tries to optimize task execution, and the 

implementation of a task release method intended to reduce any 

negative impact on performance validity. The EEPI algorithm has 

proven to be effective by showing fewer iterations and 

communications compared to existing approaches. The 

subsequent sections offer a thorough explanation of the 

mathematical representation of the distributed job allocation 

problem. Furthermore, a new cost function is presented, and the 

EEPI algorithm and work release mechanism are thoroughly 

examined. The effectiveness and productivity of the EEPI 

algorithm have been confirmed by simulation results and 

hardware-in-the-loop trials. These findings provide useful insights 

for the actual utilisation of the algorithm in many applications. 

  

II. FORMULATION OF PROBLEM 

This study focuses on analysing a group of unmanned vehicles, 

referred to as V = {1, 2, ..., n}. These vehicles are utilised to carry 

out a specific set of tasks, denoted as T = {1, 2, ..., m}. It is crucial 

that each vehicle reaches the assigned destination for a task before 

starting the work, following operating rules. The vehicles employ 

a decentralised operational method, where a thorough task 

assignment strategy is collaboratively developed by exchanging 

information through a communication network. The primary 

objective of task allocation is to determine the assignment of work 

to individual vehicles and the organization of these tasks in a way 

that maximizes overall global goals. The main goal of this study 

is to enhance task allocations by maximizing the total number of 

tasks assigned to vehicles, while also maintaining adherence to 

time constraints and fuel limitations. 

Regarding the job allocation problem being discussed, it 

is crucial to acknowledge that each vehicle can only perform one 

task at a time. Moreover, it is crucial to recognize that every duty 

necessitates the sole utilization of a designated vehicle. 

Furthermore, it is noteworthy that a solitary vehicle possesses the 

capacity to consecutively execute numerous duties. The use of 

symbols is followed by a thorough table, referred to as Table I, 

that offers a detailed explanation and illustration of each symbol. 

Tasks are classified into distinct categories based on their specific 

requirements, and only vehicles equipped with the requisite 

capabilities can do a given work. Each task, denoted by the 

variable j, is characterized by a pre-established deadline time (sj). 

The timely initiation of each task is crucial for its proper 

completion. The variable τj denotes the time taken by a vehicle to 

execute job j, starting from the commencement of execution until 

it is successfully finished. It is hypothesized that different tasks, 

even those that are the same, may have varied durations, while the 

length remains the same for the same task performed by multiple 

vehicles. The fuel capacity of each vehicle, indicated by the active 

time (fi), shows the projected duration until the vehicle depletes 

its gasoline. The allocation of tasks to vehicle i is restricted by 

capacity restrictions, where vehicle i can be assigned a maximum 

of Li tasks. The vehicles commence their mission within the 

designated region and must return to base B situated outside the 

mission area before depleting their fuel. This limitation is 

especially crucial for certain types of vehicles, such as unmanned 

aerial vehicles (UAVs). 

The variable "ai" represents the task list that is linked to 

vehicle "i". This task list consists of a sequentially arranged set of 

tasks from the set T. The element represented as aik = j in the 

sequence ai signifies the kth task carried out by vehicle i within 

the sequence ai, namely task j. The estimation of the start time for 

task execution in the field of artificial intelligence, as well as the 

following return time to the base for a specific vehicle labelled as 

"i," can be accomplished using a recursive method. 

III. DEVELOPED METHODOLOGY 

 

The Effective and Efficient Performance Impact (EEPI) method is 

specifically intended to systematically attain optimal performance 

outcomes. The technique operates iteratively, consisting of two 

separate phases: task inclusion and consensus and task removal. 

These phases are carried out in an alternating manner until stability 

is achieved in both phases. The measurement and evaluation of the 

impacts on removal performance (RPIs) and inclusion 

performance (IPIs) are crucial in the iterative procedures being 

considered. The Introducing a New Task Impact on Vehicle Cost 

(IPI) statistic measures the specific influence of adding a new task 

on the total cost of a vehicle. The Removal of Task Impact (RPI) 

statistic measures the specific impact of eliminating a task on the 

total cost of a vehicle. During the task inclusion step, tasks are 

added to the task list of each vehicle by assessing the differences 

between their Relative Priority Indices (RPIs) and Individual 

Priority Indices (IPIs). During the consensus and task elimination 

phase, cars participate in the trade of their individual local 

assignments. Afterwards, each vehicle updates its own assignment 

by incorporating the assignments obtained from other cars. 

Subsequently, tasks with lower Relative Priority Index (RPI) 

values, as decided by other cars, are methodically removed from 

the task list of each corresponding vehicle. To reduce the 

frequency of invalid Resource Processing Indices (RPIs) and 

Invalid Processing Indices (IPIs), a task release method has been 

created and put into effect after each task removal phase. This 
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technique involves clearing all tasks from the task list of the 

vehicle that has successfully completed the greatest number of 

tasks. The cost function is a basic idea in diverse domains of study 

and analysis. It functions as a quantitative depiction of the costs 

linked to a specific system, process, or decision. Quantitatively. 

Algorithm1: Including Vehicle I in the Task Phase 

1. Initialize: Begin the task inclusion phase on Vehicle i. 

2. Loop: Continue the process until the total number of 

tasks in the task list (|ai|) reaches the vehicle's capacity 

(Li). 

3. Compute IPIs: Calculate the Inclusion Performance 

Impacts (IPIs) for each task based on Equation (11). 

4. Evaluate Impact: Determine the maximum difference (g) 

between the RPI and IPI of tasks. 

5. Check Impact: If the impact (g) is positive (g > 0), 

▪ Identify Task: Find the task (q) that contributes the most 

to the impact. 

▪ Find Position: Identify the optimal position (p) to insert 

task q in the task list. 

▪ Insert Task: Add task q to the task list at position p. 

▪ Update Assignment: Record the vehicle i as the assigned 

vehicle for task q (βiq = i). 

▪ Update RPI: Adjust the Removal Performance Impact 

(RPI) of task q (w⊖iq = w⊕iq). 

▪ Update Costs: Adjust the start time and costs of tasks in 

the updated task list ai. 

▪ Check Impact: If the impact (g) is non-positive (g ≤ 0), 

exit the loop. 

▪ Update RPIs: After the task inclusion phase, update the 

RPIs of tasks in ai using Equation (13). 

A. Cost Function  

The temporal duration during which a vehicle remains operational, 

constrained by its fuel capacity, can be divided into two distinct 

components: the execution time, which denotes the duration 

required for task completion, and the travelling time, which 

represents the duration necessary for the vehicle to traverse to 

different task locations. The optimization of travel time is of 

utmost importance in order to maximize the efficiency and 

productivity of task execution. The cost function under 

consideration incorporates the expenses associated with travelling 

for each task, with a particular emphasis on the imperative of 

minimizing travel time. Furthermore, in light of the temporal 

duration between the initiation of a task and its designated 

deadline, commonly referred to as the deadline cost, tasks are 

strategically ranked and organized in accordance with their 

relative proximity to said deadlines. The primary objective of the 

cost function is to allocate time slots to tasks that have earlier 

deadlines, thereby facilitating the completion of a greater number 

of tasks within the given timeframe. 

B. Task inclusion Phase  

During the task inclusion phase, candidate tasks undergo thorough 

evaluation and assessment to determine their suitability for 

inclusion in the task list of each vehicle. The tasks are inserted one 

after another in a sequential manner. Then, an evaluation is carried 

out to determine their influence on both the Resource Performance 

Indicators (RPIs) and the influence Performance Indicators (IPIs). 

The inherent process index (IPI) of each task can be influenced by 

the exact order in which the tasks are included. The procedural 

protocol is designed to systematically integrate jobs in a way that 

efficiently reduces the total Resource Performance Index (RPI). 

Algorithm 2: In the process of removing tasks from vehicle i, 

1. Identify Candidates: Determine the list of candidate tasks 

(di) intended for removal. 

2. Initialize Counter: Set the count of removed tasks (θii) to 

zero. 

3. Loop: Continue the process as long as there are tasks in 

the candidate list (|di| > 0). 

4. Calculate RPIs: Compute the Removal Performance 

Impacts (RPIs) for tasks in di using Equation (13). 

5. Evaluate Impact: Determine the maximum impact (g⋄) 
based on the differences between RPI and the current 

Removal Performance Impacts. 

6. Check Impact: If the impact (g⋄) is positive (g⋄ > 0), 

▪ Identify Task: Find the task (q) with the highest impact 

in di. 

▪ Remove Task: Eliminate task q from the task list (ai) and 

candidate list (di). 

▪ Update Costs: Adjust the start time and costs of the 

remaining tasks in ai. 

▪ Update Counter: Increase the count of removed tasks 

(θii) by 1. 

7. Check Impact: If the impact (g⋄) is non-positive (g⋄ ≤ 0), 

exit the loop. 

8. Update Assignments: After the task removal phase, 

confirm the assigned vehicle for each task in the 

candidate list (di) as vehicle i (βi j = i for all j in di). 

 

C. Consensus and Task Removal Phase 

Conflicts may occur among the allocations of different vehicles 

during the consensus phase. To resolve conflicts, cars exchange 

their Registered Participant Identifier (RPI) and winner lists, using 

the consensus criteria set by the Cross-Border Blockchain Alliance 

(CBBA). During the subsequent step of task elimination, tasks 

with lower Relative Priority Indices (RPIs), as assessed by other 

vehicles, are gradually discarded. The task removal step is 

implemented to maintain the ongoing coherence of tasks with the 

consensus decisions that have been reached. 

 

Algorithm 3: Program Outline for the Suggested EEPI 

Initialization: 

Define the world, vehicles, tasks, and network topology. 

Vehicle Initialization: 

For each vehicle i in the set of vehicles V: 

Initialize task list (ai), RPI (w⊕i), IPI (w⊖i), winner list (βi), 

timestamp list (δi), and removal list (θi). 

Iteration Loop: 

While convergence criteria are not met, continue the iteration. 

Communication and Update Phase: 

For each vehicle k in the set of vehicles V: 

For each vehicle i in the set of vehicles V: 

If vehicles k and i are connected: 

Update RPI (w⊖i), winner list (βi), timestamp list (δi), and 

removal list (θi) based on the information from vehicle k using 

CBBA rules. 
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Task Removal and Inclusion Phases: 

For each vehicle i in the set of vehicles V: 

Execute the task removal phase. 

If i is the vehicle that removed the most tasks (arg maxk⩽n θik) 

and the count of removed tasks (θii) is greater than 1: 

Remove all tasks in ai, reset their RPIs, IPIs, and winners. 

Execute the task inclusion phase. 

Convergence Check: 

If the algorithm has converged, exit the iteration loop. 

End of Main Program. 

D. Proposed Task Release Procedure 

A task release method has been established to resolve the problem 

of invalid Resource Provider Identifiers (RPIs) and Infrastructure 

Provider Identifiers (IPIs). After the task removal phase is 

finished, if a vehicle successfully removes the most tasks, it is 

important to mention that all tasks linked to that vehicle will be 

instantly freed. The purpose of implementing this technique is to 

reduce the occurrence of differences in Relative Performance 

Indexes (RPIs) and Individual Performance Indexes (IPIs) that 

may result from the removal of tasks. The main element of the 

EEPI programme entails the establishment of task-specific lists for 

each vehicle. Subsequently, a sequence of iterative broadcasts of 

assignments and updates, which comply with the CBBA 

consensus rules, takes place. This is then followed by further 

phases for removing and including tasks. The algorithm continues 

to iterate until a level of stability is achieved in both phases. 

 

 
 

Figure 1. Developed methodology with cost function. 

E. Convergence 

To address potential issues arising from convergence, especially 

in algorithms utilising proportional-integral (PI) control, 

additional constraints are included. The indicated limitations aim 

to expedite the timely distribution of RPI updates across cars, thus 

reducing the likelihood of endless cycles and promoting 

convergence within a limited number of iterations. The EEPI 

method, as originally suggested, presents a resilient framework 

that exhibits both efficacy and efficiency in the realm of 

distributed job allocation. 

 
 

Figure 2. Result with task release procedure. 

 

 
Figure 3. When PI-based algorithms fail, task j1 and task j2's 

relative RPIs in the idea of cars i1 and i2: The previous iteration. 

The last iteration. 
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Figure 4. Simulations with 12 vehicles use these communication 

network configurations. Bidirectional communication is possible 

between two vehicles connected by a solid line in topologies. 

IV. EXPERIMENTATION 

A. Possible Test Cases and Parameter Setups 

To verify the suggested Energy Efficient Positioning Indicator 

(EEPI), a set of simulations were conducted using a search and 

rescue scenario, as described in reference [15]. In this particular 

situation, autonomous cars were tasked with the duty of delivering 

vital aid and support to persons who had experienced a devastating 

incident. The classification of jobs into two distinct categories, 

specifically the dispensation of medications and the provision of 

sustenance, was carried out with the primary aim of matching the 

individual requirements of survivors. A classification of vehicles 

was conducted, leading to the recognition of two separate 

categories: vehicles specifically designed for the conveyance of 

medical supplies and vehicles specifically designated for the 

delivery of food products. 

Survivors were generated consistently and uniformly 

within a mission area that measured 10,000 m in length, 10,000 m 

in breadth, and 1,000 m in height. Simultaneously, automobiles 

were initially placed on a two-dimensional surface. The vehicles 

used for transporting medicines and food had cruising speeds of 

30 m/s and 50 m/s, respectively. The base station, located near the 

mission area, served as a designated meeting location for vehicles 

to return to. The lengths of jobs, estimations of fuel consumption, 

and deadlines were reliably determined across various parameters. 

The communication network topology has been highly 

important, featuring four various network topologies as shown in 

the drawings. The study considered the limitations of both 

communication range and perception range, ensuring that vehicles 

only engaged in communication activities within their specific 

operational boundaries. To assess the effectiveness of the 

proposed Energy Efficiency Performance Index (EEPI), a 

comparative analysis was performed, involving three established 

methods: the Consensus-Based Bundle Algorithm (CBBA), the 

Performance Index (PI), and the Performance Index with 

Maximum Assignment (PI-maxAss). The research was conducted 

utilising MATLAB R2017b, a commonly employed software 

platform for numerical computation and algorithmic development. 

Each scenario involved doing one hundred separate iterations to 

evaluate task assignments, the amount of iterations, and CPU time 

needed to achieve convergence. 

B. Results for Simulation 

The algorithms underwent evaluation utilising a fleet of 12 and 18 

vehicles, which were responsible for the transportation of essential 

medical supplies and sustenance to a varying number of survivors, 

ranging from 36 to 132 individuals.  

 
Figure 5. CBBA Average task allocation 

The experimental evaluation demonstrates that EEPI consistently 

exhibited superior performance compared to CBBA and PI. 

Notably, the achieved results were found to be in close proximity 

to those obtained by PI-maxAss. The rate of task allocations 

exhibited a notable acceleration when the number of tasks was 

relatively low, whereas it demonstrated a deceleration trend as the 

number of tasks increased, contingent upon the task-to-vehicle 

ratios. 

The experimental results indicate that EEPI outperformed both PI 

and PI-maxAss in terms of the number of iterations and CPU time. 

In the context of a high task-to-vehicle ratio, it was observed that 

EEPI exhibited superior performance in terms of iterations when 

compared to CBBA. However, it is worth noting that EEPI 

incurred higher CPU time as a result of its heightened 

computational complexity. 
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Figure 6. CBBA Average number of iterations 

 
Figure 7. CBBA Average CPU times/second. 

C. Network Topologies 

The findings exhibited variability across diverse network 

topologies. The experimental results consistently demonstrated 

that the EEPI algorithm exhibited superior performance compared 

to both the CBBA and PI algorithms. Furthermore, the 

performance of EEPI was found to be comparable to that of PI-

maxAss. The convergence speed and CPU time were found to be 

in favour of the EEPI method when compared to both the PI and 

PI-maxAss methods. 

 

D. With or Without Releasing Tasks: 

 

The task allocations of the EEPI (Enterprise Efficiency and 

Productivity Index) demonstrated notable enhancements 

subsequent to the completion of the consensus and removal 

phases. The observed trend indicates a marginal increase in the 

number of iterations, while still maintaining a higher level of 

efficiency compared to CBBA, PI, and PI-maxAss algorithms. 

 

Table 1. Various network topologies simulation result 

 

 

 
 Figure 8. CBBA task allocation box plot. 

 
Figure 9. with or without releasing task, number of iteration. 
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In the realm of task allocations, it has been observed that EEPI 

consistently exhibits superior performance when compared to 

CBBA and PI. The observed trend of enhanced task allocations 

across all algorithms can be attributed to the expanding 

communication range. The significance of communication in the 

context of EEPI became apparent when its scope was limited.

 
Figure 10. Task allocation with numerous communication ranges 

 

D. Perception Range 

The experimental evaluation demonstrated that the EEPI 

algorithm exhibited superior performance compared to both the 

CBBA and PI algorithms. Specifically, as the perception range 

was expanded, there was a notable increase in the task allocations 

achieved by the EEPI algorithm. The superiority of EEPI over PI-

maxAss was found to be more pronounced when larger perception 

ranges were considered. 

 
Figure 11. Task allocation with numerous perception ranges. 

V. R&D ON HARDWARE-IN-THE-LOOP 

In order to enhance the credibility and reliability of the proposed 

Energy Efficient Path Planning Algorithm (EEPI), a series of 

hardware-in-the-loop experiments were undertaken. These 

experiments were specifically designed to validate the effectiveness 

and efficiency of the EEPI algorithm on a platform that utilised 

unmanned aerial vehicles (UAVs). The experimental configuration, 

as illustrated in Figure 12, encompassed tangible onboard modules, 

namely an onboard processing unit, a flight controller, and an 

Adhoc network. The experimental setup involved the definition and 

display of scenarios, unmanned aerial vehicles (UAVs), and tasks 

on a designated host machine. Subsequently, real onboard modules 

were employed during the execution of the experiments. 

 

 
Figure 12. Main strategy for running distributed task allocation 

algorithms on experimental hardware-in-the-loop system. 

 

Figure 13 depicts the tangible components integrated within each 

Unmanned Aerial Vehicle (UAV), specifically highlighting the 

presence of the onboard processing unit, flight controller, and 

Adhoc network. In order to implement distributed task allocation 

algorithms, the host machine transmitted configurations to the 

respective unmanned aerial vehicles (UAVs). The conducted 

experiments encompassed the utilisation of Unmanned Aerial 

Vehicles (UAVs) in their trajectory towards a designated mission 

area. Subsequently, task allocation procedures were initiated, 

followed by the execution of tasks in accordance with the 

computed trajectories. The experimental setup consisted of a 
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rectangular mission area, involving three unmanned aerial 

vehicles (UAVs) and a total of eighteen tasks. In stark contrast to 

simulations, the positions of fixed-wing unmanned aerial vehicles 

(UAVs) exhibited a dynamic nature. Task activation occurred 

upon the proximity of an Unmanned Aerial Vehicle (UAV) to its 

designated target, within a predetermined threshold distance. 

 
Figure 13. Each UAV Really Has Its Own Set of Onboard 

Modules and test scenarios. 

 

E. Experimental Results 

 

A series of ten experiments were undertaken, wherein different 

combinations of deadlines, task durations, and UAV active times 

were examined. Table II provides a summary of the task 

allocations and convergence time for the Cooperative Bundle 

Algorithm (CBBA), the Priority Index (PI) method, the PI-

maxAss approach, and the proposed Enhanced Efficiency Priority 

Index (EEPI). 

Table 2. Priority of Tasks and Convergence Timing in Hardware-

in-the-Loop Studies 

 
 

The experimental results consistently showed that the proposed 

Enhanced Efficient Path Iteration (EEPI) algorithm exhibited 

superior task allocations when compared to the CBBA and PI 

algorithms. In fact, in the majority of scenarios, the EEPI 

algorithm performed on par with the PI-maxAss algorithm. The 

convergence time observed with the proposed Energy-Efficient 

Power Iteration (EEPI) algorithm consistently exhibited the lowest 

values, frequently amounting to less than half of the convergence 

time achieved by the PI-maxAss algorithm. It is worth noting that, 

in comparison to simulations, the convergence time of the 

proposed Energy-Efficient Pathfinding Algorithm (EEPI) 

occasionally exhibited a shorter duration than the Consensus-

Based Bundle Algorithm (CBBA). This discrepancy can be 

attributed to hardware limitations encountered when employing a 

smaller fleet of Unmanned Aerial Vehicles (UAVs). The 

conducted experiments demonstrated that, within a hardware-in-

the-loop setting, the efficiency of the proposed Enhanced 

Evolutionary Particle Intelligence (EEPI) algorithm surpassed that 

of alternative algorithms in terms of both task allocations and 

convergence time. 

 

VI. CONCLUSION 

An innovative and highly efficient distributed task allocation 

method is presented in this paper. This method is referred to as the 

Effective and Efficient Task Allocation (EEPI), and it is a 

revolutionary approach to job allocation. The fundamental goal of 

EEPI is to maximise the total number of jobs that are successfully 

completed while minimising the amount of time that must be spent 

rescheduling. When conducting this study, the researchers took 

into consideration the initiation times, work deadlines, and fuel 

limits that are associated with automobiles. In order to facilitate 

the allocation of extra jobs while simultaneously attaining 

convergence in a decreased number of iterations, a novel cost 

function was developed inside the implementation of the EEPI 

framework. There is a mechanism that has been established in 

order to handle the problem of invalid Relative Priority Indices 

(RPIs) and Inter-Task Priority Indices (IPIs). This mechanism is 

responsible for releasing all of the tasks that are contained within 

a vehicle's task list in the case that it eliminates the highest number 

of tasks during the phase that is dedicated to task removal. The 

execution of this particular strategy has demonstrated a significant 

level of effectiveness in increasing the total number of tasks that 

have been successfully completed thanks to the deployment of this 

particular strategy. 

In order to demonstrate the effectiveness and efficiency of the 

proposed EEPI, a complete analysis was conducted, which 

included extensive simulations and experiments incorporating 

hardware-in-the-loop. Our primary purpose is to examine the 

relationship between the number of iterations and the various 

network topologies that we will be conducting in the course of our 

upcoming research efforts. In addition, the purpose of our research 

is to address the difficulties that are associated with the assignment 

of duties in situations that include the cooperation of several 

vehicles in the execution of a task simultaneously, as well as in 

circumstances in which a single vehicle is responsible for 

executing multiple jobs simultaneously. 

.  
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