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          Abstract 

   

         This article is concerned with the development of fast iterative methods for the numerical analysis of 

linear partial differential equation. In this work convection–diffusion equation with a small parameter 

multiplying with diffusion term is considered. A fourth-order compact difference scheme with uniform mesh 

points is employed to discretize a 2‒dimmensional convection-diffusion equation.  

         Finally, we compared multigrid method with fourth order compact difference scheme with the standard 

second order central difference scheme.  Numerical results show the efficiency of this method. 
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1. Introduction  

 

Convection is a physical way by which property is transfer according to its flow, on the other hand diffusion 

is usually investigated phenomena play an important role in scientific modeling problems in which heat 

transfer and fluid flow take place. There are large numbers of physical problems in which convection and 
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diffusion are involved, such as in the modeling of semi-conductors, transport of air and ground water 

pollutant etc, [12].  

There are two terms involved in convection-diffusion equation, first is convection and second is diffusion.  

Convection-diffusion equation is widely used in modeling and simulations of various complex phenomena in 

science and engineering. As it has many applications, so we discuss techniques for the numerical solution of 

this equation.  

This problem is concerned with  convection-diffusion equation is:  

                                  

{
 
 

 
 −

1

𝑝𝑒
∆𝑢 +

1

2
[𝑣1𝑢𝑥 + 𝑣2𝑢𝑦 + (𝑣1𝑢)𝑥 + (𝑣2𝑢𝑦)] = 𝑓,

𝑣𝑖 = 𝑣𝑖(𝑥, 𝑦),    𝑖 = 1,2,    𝑢 = 𝑢(𝑥, 𝑦),   𝑓 = 𝑓(𝑥, 𝑦),
(𝑥, 𝑦) ∈ Ω = [0,1] × [0,1],                                             

𝑢│𝜕Ω = 0.                                                                             

                               (1)  

where  𝑝𝑒 denote the peclet numbers, 𝑣 = (𝑣1, 𝑣2) show velocity vector, 𝑢 is the solution of the equation (1) 

and Ω is a rectangular domain with suitable boundary conditions. We discretized Ω with uniform mesh sizes,  

∆𝑥 and ∆𝑦 in the 𝑥 and 𝑦 directions respectively. 

Consider a special case where 𝑣1 = 1 &  𝑣2 = −1, in equation (1). Equation (1) can be extended to any 

values of 𝑣1, 𝑣2  then we have : 

                             −
1

𝑝𝑒
(𝑢𝑥𝑥 + 𝑢𝑦𝑦)   𝑢𝑥 − 𝑢𝑦= 𝑓(𝑥, 𝑦).                                                        (2) 

  

 

        Mathematical models which contain a combination of convection and diffusion procedure are widely 

used in all sciences [14, 1]. Research for that procedure is very important but complicated, when convection 

is dominant [7]. Convection diffusion equation is a second order partial differential equation. We use fourth 

order compact difference scheme for approximation of convection diffusion equation, after the 

implementation of this scheme we get system of linear equations. Matrix of these equations is diagonally 

dominant. 

        The numerical solution of convection-diffusion equation has been developed by using different 

approaches such as second order upwind difference scheme and five point central difference scheme. But the 

upwind difference scheme cannot give desirable results, because it frequently prevents oscillation and 

another disadvantage is that it reduces accuracy to the 𝑂(∆𝑥) [17]. The central difference scheme has a 
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truncation error of order 𝑂(∆𝑥2), its results are less accurate for large coefficient of highest order derivatives 

[21]. To obtain more accurate solution for convection diffusion equation, more complex procedures are 

required.      

            In this work multigrid method with fourth order compact approximation is used to solve the 2D 

convection-diffusion equation on uniform grids. We use multi-grid method with fourth order compact 

scheme, because its numerical results are more accurate and efficient then the second order scheme. In this 

work a multi-grid method is developed for the solution of 2D convection diffusion equation based on fourth 

order compact scheme. The method is faster than any other direct or iterative solving methods. Multi-grid 

method using Gauss-Seidel is considered to solve the linear system of equations. Multi-grid method works 

by decomposing a problem into separate length scales, and using an iterative solver method that optimizes 

error reduction for that length scale.  

2. Fourth order compact difference scheme  

We discretize now the two dimensional convection diffusion equation in both 𝑥 and 𝑦 directions with 

uniform mesh  ∆𝑥 and ∆𝑦 respectively, using second order central differences .  We can write equation (1) 

as: 

     (𝛿𝑥
2𝑢𝑖,𝑗 + 𝛿𝑦

2𝑢𝑖,𝑗) − 𝑝(𝛿𝑥𝑢𝑖,𝑗 − 𝛿𝑦𝑢𝑖,𝑗) = −𝑝𝑓𝑖,𝑗,                                                                                   (2) 

     where 𝑢𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗) and 𝑓𝑖,𝑗 = 𝑓(𝑥𝑖, 𝑦𝑗). 

 The fourth order compact approximation for 1D convection-diffusion equation can be written as done in  

[15] : 

    𝛿𝑥
2𝑢𝑖 = (𝟏 +

∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐) 𝑓𝑖 +𝑂(∆𝑥

4) ,                                                                                                          (3)   

equation (3) can also be written as: 

       (𝟏 +
∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐)
−1

𝛿𝑥
2𝑢𝑖 = 𝑓𝑖 + 𝑂(∆𝑥

4), 

 and   

         (𝟏 +
∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐)
−1

𝛿𝑦
2𝑢𝑖 = 𝑓𝑖 + 𝑂(∆𝑦

4). 

Equation (2) becomes  

  (𝟏 +
∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐)
−𝟏

𝜹𝒙
𝟐𝒖𝒊,𝒋 + (𝟏 +

∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐)
−𝟏

𝜹𝒚
𝟐𝒖𝒊,𝒋 − 𝒑(𝜹𝒙𝒖𝒊,𝒋 − 𝜹𝒚𝒖𝒊,𝒋) = −𝒑𝒇𝒊,𝒋 + 𝑶(∆𝒙

𝟒),                     (4)                 
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the equation (4) can be written as :                                                                                                                                                                                                                                         

(𝟏 +
∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐) 𝜹𝒙

𝟐𝒖𝒊,𝒋 + (𝟏 +
∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐)
 

𝜹𝒚
𝟐𝒖𝒊,𝒋 − 𝒑(𝟏 +

∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐 +

∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐) 𝜹𝒙𝒖𝒊,𝒋

 + 
 
𝒑(𝟏 +

∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐 +

∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐) 𝜹𝒚𝒖𝒊,𝒋 

 
 

  

       

= −𝒑(𝟏 +
∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐) (𝟏 +

∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐)
  

 𝒇𝒊,𝒋 +𝑶(∆𝒙
𝟒)  

= −𝒑(𝟏 +
𝟏

𝟏𝟐
(∆𝒙𝟐𝜹𝒙

𝟐 + ∆𝒚𝟐𝜹𝒚
𝟐) ) 𝒇𝒊,𝒋 + 𝑶(∆𝒙

𝟒).                                                                                      (5)                     

 Now we simplify the fourth-order compact approximation scheme and neglecting the order 𝑂(∆𝑥4) terms, 

then equation (5) can be written as  

 (𝜹𝒙
𝟐 + 𝜹𝒚

𝟐)𝒖𝒊,𝒋⏟        
𝒍𝟏

+
𝟏

𝟏𝟐
(∆𝟐)𝜹𝒙

𝟐𝜹𝒚
𝟐

⏟      
𝒍𝟐

− 𝒑(𝟏 +
∆𝒙𝟐𝜹𝟐𝒙

𝟏𝟐
+
∆𝒚𝟐𝜹𝟐𝒚

𝟏𝟐
)𝜹𝒙𝒖𝒊,𝒋 ⏟                  

𝒍𝟑

+𝒑(𝟏 +  
∆𝒙𝟐

𝟏𝟐
𝜹𝒙
𝟐 +

∆𝒚𝟐

𝟏𝟐
𝜹𝒚
𝟐)𝜹𝒚𝒖𝒊,𝒋.

 
 

 ⏟                    
𝒍𝟒

 

                                                                                                                                                                                                                                                                                                                

= −𝑝 (𝒇𝒊,𝒋 +
𝟏

𝟏𝟐
(∆𝒙𝟐𝜹𝒙

𝟐 + ∆𝒚𝟐𝜹𝒚
𝟐)𝒇𝒊,𝒋)⏟                      

𝒍𝟓

+ 𝑂(∆𝑥4).                              

   𝑙1 + 𝑙2 + 𝑙3 + 𝑙4 = 𝑙5                                                                                                                           (6) 

 

      𝑙1 = (𝜹𝒙
𝟐 + 𝜹𝒚

𝟐)𝒖𝒊,𝒋  =
𝒖𝒊+𝟏,𝒋−𝟐𝒖𝒊,𝒋+𝒖𝒊−𝟏,𝒋 

∆𝒙𝟐
+
𝒖𝒊,𝒋+𝟏−𝟐𝒖𝒊,𝒋+𝒖𝒊,𝒋−𝟏 

∆𝒚𝟐
, 

generally, we denote the mesh ratio by   𝜸 =
∆𝒙

∆𝒚
, 

 𝑙2 =
𝟏

𝟏𝟐
(𝜸∆𝒚𝟐 + ∆𝒚𝟐)𝜹𝒙

𝟐𝜹𝒚
𝟐𝒖𝒊,𝒋  = (

𝟏+𝜸𝟐

𝟏𝟐
)∆𝒚𝟐𝜹𝒙

𝟐𝜹𝒚
𝟐𝒖𝒊,𝒋 

  = (
𝟏+𝜸𝟐

𝟏𝟐
)∆𝒚𝟐 (𝜹𝒙

𝟐 (
𝒖𝒊,𝒋+𝟏−𝟐𝒖𝒊,𝒋+𝒖𝒊,𝒋−𝟏

∆𝒚𝟐
)) 

 = (
𝟏+𝜸𝟐

𝟏𝟐
) (𝜹𝒙

𝟐𝒖𝒊,𝒋+𝟏 − 𝟐𝜹𝒙
𝟐𝒖𝒊,𝒋 + 𝜹𝒙

𝟐𝒖𝒊 ,𝒋−𝟏)    

 = (
1+𝛾2

12
) (

𝒖𝒊+𝟏,𝒋+𝟏−𝟐𝒖𝒊,𝒋+𝟏+𝒖𝒊−𝟏,𝒋+𝟏

∆𝒙𝟐
− 2

𝒖𝒊+𝟏,𝒋−𝟐𝒖𝒊,𝒋+𝒖𝒊−𝟏,𝒋

∆𝒙𝟐
+
𝒖𝒊+𝟏,𝒋−𝟏−𝟐𝒖𝒊,𝒋−𝟏+𝒖𝒊−𝟏,𝒋−𝟏

∆𝒙𝟐
).                                                              

 𝑙2 = (
1+𝛾2

12
) (

𝒖𝒊+𝟏,𝒋+𝟏 + 𝒖𝒊−𝟏,𝒋+𝟏+𝒖𝒊+𝟏,𝒋−𝟏+𝒖𝒊−𝟏,𝒋−𝟏

∆𝒙𝟐
−  2

𝒖𝒊+𝟏,𝒋+𝒖𝒊−𝟏,𝒋

∆𝒙𝟐
− 2

𝒖𝒊,𝒋+𝟏+𝒖𝒊,𝒋−𝟏

∆𝒙𝟐
+ 4

𝒖𝒊,𝒋

∆𝒙𝟐
).    

Now  

       𝑙3 = −𝒑(𝟏 +
∆𝒙𝟐𝜹𝟐𝒙

𝟏𝟐
+
∆𝒚𝟐𝜹𝟐𝒚

𝟏𝟐
) 𝜹𝒙𝒖𝒊,𝒋, 

expanding by 2nd order difference formula, we get  

        = −𝒑(𝟏 +
∆𝒙𝟐𝜹𝟐𝒙

𝟏𝟐
+
∆𝒚𝟐𝜹𝟐𝒚

𝟏𝟐
) (

𝒖𝒊+𝟏,𝒋−𝒖𝒊−𝟏,𝒋

𝟐∆𝒙
),    
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 by discretization, we get the following: 

         = −
12𝑝

   24∆𝑥
(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗) −

𝑝∆𝑥2𝛿2𝑥(𝒖𝒊+𝟏,𝒋−𝒖𝒊−𝟏,𝒋)

24∆𝑥
−
𝑝∆2𝑦𝛿2𝑦(𝒖𝒊+𝟏,𝒋−𝒖𝒊−𝟏,𝒋) 

24∆𝑥
. 

 Putting ∆𝑥 = ∆𝑦 , then we have: 

       𝑙3 = −
𝑝

24∆𝑥
(9𝑢𝑖+1,𝑗 − 9𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗+1 − 𝑢𝑖−1,𝑗−1).     

and 

                𝑙4 = 𝑝 (1 +
∆𝑥2𝛿2𝑥

12
+
∆𝑦2𝛿2𝑦

12
) (

𝒖𝒊,𝒋+𝟏−𝒖𝒊,𝒋−𝟏

2∆𝑦
)  

              𝑙4 =
𝑝

24∆𝑦
(9𝑢𝑖,𝑗+1 − 9𝑢𝑖,𝑗−1 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗+1 − 𝑢𝑖+1,𝑗−1−𝑢𝑖−1,𝑗−1).           

Now the right hand side (𝑙5)  of (6) can be simplified as: 

                 𝑙5 = −𝑝(𝑓𝑖,𝑗 +
1

12
∆𝑦2(𝛾2𝛿𝑥

2 + 𝛿𝑦
2)𝑓𝑖,𝑗) + 𝑂(∆

4)     

                     = −𝑝(𝑓𝑖,𝑗 +
1

12
(𝛿𝑥

2𝑓𝑖,𝑗 + 𝛿𝑦
2𝑓𝑖,𝑗)) . 

Using second order central difference approximation, we can write as:        

                = −𝑝𝑓𝑖,𝑗 −
𝑝

12
(𝑓𝑖+1,𝑗 − 2𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗+1 − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1)  

                 =
−𝑝

12
(12𝑓𝑖,𝑗 + (𝑓𝑖+1,𝑗 − 4𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗+1)) .   

Or  

                    𝑙5 =
−𝑝

12
(𝑓𝑖+1,𝑗 + 8𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗+1).                                                

Now putting  𝑙1, 𝑙2, 𝑙3, 𝑙4 and 𝑙5  in equation (6)  we have: 

 
1

6
(
𝒖𝒊+𝟏,𝒋+𝟏 + 𝒖𝒊−𝟏,𝒋+𝟏+𝒖𝒊+𝟏,𝒋−𝟏+𝒖𝒊−𝟏,𝒋−𝟏

∆𝒙𝟐
) +

2

3
(
𝒖𝒊+𝟏,𝒋+𝒖𝒊−𝟏,𝒋

∆𝒙𝟐
) +

2

3
(
𝒖𝒊,𝒋+𝟏+𝒖𝒊,𝒋−𝟏

∆𝒙𝟐
) −

10

3
(
𝒖𝒊,𝒋

∆𝒙𝟐
)                       

+
𝑝

24∆𝑥
(−9𝑢𝑖+1,𝑗 + 9𝑢𝑖−1,𝑗 − 2𝑢𝑖+1,𝑗−1 + 2𝑢𝑖−1,𝑗+1 + 9𝑢𝑖,𝑗+1 − 9𝑢𝑖,𝑗−1)      

  =
−𝑝

12
(𝑓𝑖+1,𝑗 + 8𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗+1) .                                                                 (7)   

Multiplying both side of equation (7) by  6∆𝑥2, we get the following equation: 

 (𝑢𝑖+1,𝑗+1  +  𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗−1) + 4(𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗) + 4(𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1) 

−20𝑢𝑖,𝑗     +
𝑝∆𝑥

4
(−9𝑢𝑖+1,𝑗 + 9𝑢𝑖−1,𝑗 − 2𝑢𝑖+1,𝑗−1 + 2𝑢𝑖−1,𝑗+1 + 9𝑢𝑖,𝑗+1 − 9𝑢𝑖,𝑗−1) 

 =
−𝑝∆𝑥2

2
(𝑓𝑖+1,𝑗 + 8𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗+1)                                                                          (8) 
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   equation (8) can be written as:                                                                                                                           

       = (𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗−1) + (1 −
2𝑝∆𝑥

4
) 𝑢𝑖+1,𝑗−1 + (1 +

2𝑝∆𝑥

4
)𝑢𝑖−1,𝑗+1 + (4 −

9𝑝∆𝑥

4
)𝑢𝑖+1,𝑗   

           +(4 +
9𝑝∆𝑥

4
) 𝑢𝑖−1,𝑗 + (4 +

9𝑝∆𝑥

4
)𝑢𝑖,𝑗+1 +(4 −

9𝑝∆𝑥

4
) 𝑢𝑖,𝑗−1 − 20𝑢𝑖,𝑗 . 

        =
−𝒑∆𝒙𝟐(𝒇𝒊+𝟏,𝒋+𝟖𝒇𝒊,𝒋+𝒇𝒊−𝟏,𝒋+𝒇𝒊,𝒋−𝟏+𝒇𝒊,𝒋+𝟏)

𝟐
 .                                                                                          (9) 

Let  𝒂 = 𝟏 −
𝟐𝒑∆𝒙

𝟒
 ,  𝒃 = 𝟏 +

𝟐𝒑∆𝒙

𝟒
 ,  𝒄 = 𝟒 −

𝟗𝒑∆𝒙

𝟒
 , 𝒅 = 𝟒 +

𝟗𝒑∆𝒙

𝟒
 ,  𝒆 = 𝟒 +

𝟗𝒑∆𝒙

𝟒
 , and  

 𝒈 = 𝟒 −
𝟗𝒑∆𝒙

𝟒
.  For equation (9) we have                                                                                

   (𝒖𝒊+𝟏,𝒋+𝟏 + 𝒖𝒊−𝟏,𝒋−𝟏) + 𝒂𝒖𝒊+𝟏,𝒋−𝟏 + 𝒃𝒖𝒊−𝟏,𝒋+𝟏 + 𝒄𝒖𝒊+𝟏,𝒋 + 𝒅𝒖𝒊−𝟏,𝒋 + 𝒆𝒖𝒊,𝒋+𝟏 + 𝒈𝒖𝒊,𝒋−𝟏 − 𝟐𝟎𝒖𝒊,𝒋 

           = 
−𝒑∆𝒙𝟐

𝟐
(𝒇𝒊+𝟏,𝒋 + 𝟖𝒇𝒊,𝒋 + 𝒇𝒊−𝟏,𝒋 + 𝒇𝒊,𝒋−𝟏 + 𝒇𝒊,𝒋+𝟏).                                                               (10) 

Using equation (10), we get the system of linear equations by  

                                                                 𝑀𝑢 = 𝑓 ,                                                                                     (11) 

where 𝑀 is the coefficient  matrix and is very large symmetric matrix,  𝑢 is the vector  and 𝑓 is the right hand 

side vector. The matrix 𝑀 can be written in the form of block tri-diagonal matrix, each block of order 𝑁𝑦 so 

order of the co-efficient matrix 𝑀 is 𝑁𝑥 ×𝑁𝑦, where  

 𝑀 = 𝑑𝑖𝑎𝑔[𝑀2, 𝑀0, 𝑀1],  and   

 𝑀0 = 𝑑𝑖𝑎𝑔[4 , −20, 4 ] , 𝑀1 = 𝑑𝑖𝑎𝑔[1 , 𝑒, 1], 𝑀2 = 𝑑𝑖𝑎𝑔[1 , 𝑔, 1]  are symmetric tri-diagonal sub matrices 

of the order 𝑁𝑥, where each  𝑀2, 𝑀0 and 𝑀1 denote the sub-matrices of each line along one direction. The 

matrix 𝑀 contains constant blocks at each grid line, where 𝑁 used to show the number of grid points. The 

scheme has nine points stencil for the fourth order compact scheme which is given below. 

                        

                                                        [
𝑏            𝑒           1
𝑑      − 20         𝑐
1            𝑔           𝑎 

],  

this is the stencil notations for 2D convection diffusion equation in (𝑥, 𝑦) plane,  numerical results show that  

fourth order compact scheme has a good accuracy.   

  

3   Multigrid method       

   Numerical solution of convection-diffusion equation has been developed by using different approaches 

such as second order upwind difference scheme and five point central difference schemes [17,21]. For the 
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solution of the system of linear equations obtained from the fourth order compact scheme, if we use classical 

iterative methods like Jacobi and Gauss-Seidel method this will slow the convergence due to large linear 

system. So we have to solve equation (11) with multigrid method. In this work we use multigrid algorithm, 

with Gauss-Seidel method as a smoother. In order to remove high frequency error using fourth order 

compact difference scheme, multigrid method uses some relaxation methods and to remove the errors, it uses 

coarse grid correction. Multigrid method with fourth order compact scheme is more efficient than the 

corresponding second order scheme. In this method first high frequency components of the error are reduced 

by applying iterative techniques like Gauss-Seidel or Jacobi methods. At the same time, the low frequency 

error components are removed by coarse-grid correction procedures. We suppose that the grid points are 

ordered lexicographically, i.e. first from left to right along the x direction, then from bottom to top along  y 

direction. In multi-grid method, we use bilinear interpolation through which corrections transfer from coarse 

grid to a fine grid, we also use full-weighting scheme to update the residual on a coarse grid [8]. All 

multigrid methods use V-cycle or W-cycle algorithm.   

 

 

Multi-grid algorithm:  

The multi-grid algorithm for solving 𝑀ℎ𝑢ℎ = 𝑓ℎ. 

Let parameter 𝛾  represent the number of cycle of the multi-grid on each level, if 𝛾 = 1 it is called V-cycle 

and if 𝛾 = 2 is called a W-cycle. 

𝑣1 = pre-smoothing step on each level. 

𝑣2 = post-smoothing step on each level. 

FAS multi-grid cycle  

𝑢ℎ ← 𝐹𝐴𝑆𝐶𝑌𝐶(𝑢ℎ, 𝑓ℎ , 𝑣1, 𝑣2, 𝛾) 

1. If Ωℎ is the coarsest grid solve the equation then stop. 

              Else do the pre-smoothing step: 

                                                  𝑢ℎ ← 𝐺𝑆𝑣1(𝑢ℎ, 𝑓ℎ, 𝑣1, 𝑡𝑜𝑙),      (Pre-smoothing) 

2. Restriction : 

                                     𝑢2ℎ = 𝐼ℎ
2ℎ𝑢ℎ, 𝑈2ℎ = 𝑢2ℎ,   

                                     𝑓2ℎ = 𝐼ℎ
2ℎ(𝑓ℎ − 𝑁ℎ𝑢ℎ), 

                                     𝑢2ℎ ← 𝐹𝐴𝑆𝐶𝑌𝐶𝛾
2ℎ (𝑢2ℎ, 𝑓2ℎ, 𝑣1, 𝑣2). 
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3. Interpolation:   

                                             𝑢ℎ ← 𝑢ℎ + 𝐼2ℎ
ℎ (𝑢2ℎ − �̅�2ℎ)   

 

                                       𝑢𝒉 ← 𝐺𝑆𝑣2(𝑢𝒉, 𝑓ℎ, 𝑣2)      (Post-smoothing).           

 

4. Numerical experiments 

       In order to obtain results with multigrid method, we perform some numerical experiments by solving a 

2D convection-diffusion equation on the unit square domain[0,1] × [0,1]. The right hand side function with 

the Dirichlet boundary conditions are described to satisfy the exact solutions, 

(1)   𝑢(𝑥, 𝑦) = 𝑒𝑥𝑦 sin 𝜋𝑥 . sin 𝜋𝑦.   

(2) 𝑢(𝑥, 𝑦) = (𝑋2 − 𝑋4)(𝑌4 − 𝑌2).  

(3) 𝑢(𝑥, 𝑦) =  𝑦2(1 − 𝑦)2 sin 2𝜋𝑥.  

          In this work we will observe the results regarding, approximate solution, CPU time and residual by 

multigrid method using fourth order compact difference scheme and compare it with multigrid method using 

second order central difference scheme. If we put 𝑣1 = 𝑣2 = 0 in equation (2) the convection-diffusion 

equation reduce to Poisson equation. We examine the behavior of the scheme for different values of  𝑝, Error 

is reduces for 0 < 𝑝 < 1. Especially when 𝑝 = 0.00001 the error is reduces efficiently. The fourth order 

compact difference scheme converges faster than the second order central difference scheme, which is clear 

from the tables (4.1), (4.2), (4.3). The maximum absolute error between the exact solution and approximate 

solution is given by :   

                                           the error vector is 𝑒𝑖,𝑗 = 𝑈𝑖,𝑗 − 𝑢𝑖,𝑗 with 𝑙2 norm as: 

 

                                                                        
1

𝑁
√∑ 𝑒𝑖,𝑗

2𝑁
𝑖,𝑗=0 ,                                                                  (12) 

 

Comparison of fourth order compact scheme with second order central difference 

schemes: 

We see that at each grid level, fourth order compact scheme is much more accurate than the second order 

central difference scheme for the number of interior grid points 𝑁 = 3, 7, 15, 31, 63, 127. The fourth order 
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compact scheme is less time consuming than the second order central difference scheme using the same 

discretization parameters, 𝑁𝑥 and 𝑁𝑦, in fourth order compact scheme the number of arithmetic operation is 

more than the second order central difference scheme. Despite it gives the best results especially at 

  𝑝 = 0.00001    

           From “table 4.1” we observe that the approximate solution for fourth order compact scheme is 

8.1871 × 10−5  achieved with 𝑁 = 127, similarly with 𝑁 = 127 the approximate solution 3.8741 × 10−6   

is achieved from table 4.2.  

Example 4.1.  

                          𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑝𝑢𝑥 + 𝑝𝑢𝑦 = 𝑓(𝑥, 𝑦), where                              

𝑓(𝑥, 𝑦) = 𝑦𝑒𝑥𝑦 sin 𝜋𝑥 . sin 𝜋𝑦 (𝑦 − 𝑝) + 𝑒𝑥𝑦 sin 𝜋𝑥 . sin 𝜋𝑦 (𝑥2 + 𝑝𝑥 − 𝜋2) 

+𝑥𝑒𝑥𝑦 sin 𝜋𝑥 . 𝜋. cos 𝜋𝑦 + 𝑒𝑥𝑦𝜋. sin 𝜋𝑥 (cos 𝜋𝑦 − 𝜋𝑠𝑖𝑛𝜋𝑦), 

                                                                                                                        0 ≤ 𝑥, 𝑦 ≤ 1,       

                                          with the Drichlet boundary conditions on all sides of a unit square i.e                                                                                                 

                                             𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0,  

                                          with the exact solution   𝑢(𝑥, 𝑦) = 𝑒𝑥𝑦 sin 𝜋𝑥 . sin 𝜋𝑦. 

 

Comparison of maximum absolute errors and CPU time (Seconds) for a multigrid method 

P=0.00001       

Table 4.1                              

N  2nd   Order CPU Residual 4th   Order CPU Residual 

3 

7 

15 

31 

63 

127 

1.0317 × 100 

3.8891 × 10−1 

1.7337 × 10−1 

8.2541 × 10−2 

4.0314 × 10−2 

1.9921 × 10−2 

0.0019 

0.0059 

0.0068 

0.0075 

0.0092 

0.0131 

2.5371 × 10−14 

6.5948 × 10−13 

8.8991 × 10−12 

1.1188 × 10−10 

1.9492 × 10−9 

3.2232 × 10−8 

1.4267 × 10−1 

2.6204 × 10−2 

5.8764 × 10−3 

1.3735 × 10−3 

3.3256 × 10−4 

8.1871 × 10−5 

0.0019 

0.0063 

0.0070 

0.0092 

0.0124 

0.0188 

6.1362 × 10−20 

1.8345 × 10−19 

5.7492 × 10−19 

2.1394 × 10−18 

8.4774 × 10−18 

3.3890 × 10−17 
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Figure 4.1: Left side figure shows the error graph and right side figure shows graph of the residuals norm. 

N=127 are the number of nodes.  

Example 4.2:  

                           𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑝𝑢𝑥 + 𝑝𝑢𝑦 = 𝑓(𝑥, 𝑦), where  

                           𝑓(𝑥, 𝑦) = 2(𝑦4 − 𝑦2)[(6𝑥2 − 1) − 2𝑝(𝑥 − 2𝑥3)] 

                                          +2(𝑥2 − 𝑥4)[(6𝑦2 − 1) + 2𝑝(2𝑦3 − 𝑦)] ,     (𝑥, 𝑦) ∈ [0,1],  

                            with the Drichlet boundary conditions on all sides of a unit square i.e 

                                 𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0,  

                              with the exact solution  𝑢(𝑥, 𝑦) = (𝑋2 − 𝑋4)(𝑌4 − 𝑌2). 

Comparison of maximum absolute errors and CPU time (Seconds) for a multigrid method, 

P=0.00001 

Table 4.2 

N 2nd   Order CPU Residual 4th  Order CPU Residual 

3 

7 

15 

31 

63 

127 

5.9920 × 10−2 

1.8357 × 10−2 

8.5354 × 10−3 

4.0898 × 10−3 

1.9991 × 10−3 

9.8786 × 10−4 

0.0019 

0.0067 

0.0064 

0.0074 

0.0087 

0.0138 

4.9970 × 10−15 

2.0803 × 10−14 

2.0568 × 10−13 

4.5121 × 10−12 

7.7435 × 10−11 

1.1557 × 10−9 

2.7264 × 10−3 

1.2360 × 10−3 

2.7612 × 10−4          

6.4892 × 10−5 

1.5743 × 10−5 

3.8741 × 10−6                         

0.0019 

0.0062 

0.0069 

0.0075 

0.0079 

0.0234 

1.6236 × 10−21 

7.2746 × 10−21 

1.7267 × 10−20 

9.7272 × 10−20 

3.2098 × 10−19 

1.3985 × 10−18 
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Figure 4.2: Left side figure shows the error graph and right side figure shows graph of the residuals norm. 

N=127 are the number of nodes.   

 

Example 4.3:   

                                      𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑝𝑢𝑥 + 𝑝𝑢𝑦 = 𝑓(𝑥, 𝑦), where  

                                     𝑓(𝑥, 𝑦) = 2(1 − 𝑦2) sin 2𝜋𝑥 (1 − 2𝜋2𝑦2 + 2𝑝𝑦) + 2𝑦2 sin 2𝜋𝑥 (2𝑦 − 3 − 𝑝𝑦) 

                                        −2𝑝𝜋. cos 2𝜋𝑥 𝑦2(1 − 𝑦2)          (𝑥, 𝑦) ∈ [0,1], 

                                     with the Drichlet boundary conditions on all side of a unit square i.e 

                                          𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0,  

                                      with the exact solution      𝑢(𝑥, 𝑦) =  𝑦2(1 − 𝑦)2 sin 2𝜋𝑥. 

    Comparison of maximum absolute errors and CPU (Seconds) for a multigrid method, 

P=0.00001 

Table 4.3  

N 2nd  Order CPU Residual 4th  Order CPU Residual 

3 

7 

15 

31 

63 

127 

6.1093 × 10−2 

2.0184 × 10−2 

3.7230 × 10−3 

4.1103 × 10−3 

2.0001 × 10−3 

9.9829 × 10−3 

0.0018 

0.0058 

0.0065 

0.0100 

0.0080 

0.0106 

1.8771 × 10−15 

1.7104 × 10−14 

3.5191 × 10−13 

5.7448 × 10−12 

8.1182 × 10−11 

1.2931 × 10−9 

4.9444 × 10−3 

1.2325 × 10−3 

2.7777 × 10−4 

6.5036 × 10−4 

1.5847 × 10−5 

3.5750 × 10−6 

 

0.0018 

0.0060 

0.0067 

0.0072 

0.0140 

0.0207 

1.1645 × 10−21 

1.0226 × 10−21 

2.2554 × 10−20 

8.5589 × 10−20 

3.5831 × 10−19 

1.4555 × 10−18 
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Figure 4.3: Left side figure shows the error graph and right side figure shows graph of the residuals norm. 

N=127 are the number of nodes.   

 We studied fourth order compact difference scheme for discretization of 2D convection diffusion equation. 

Multigrid method used to solve the resulting sparse linear systems. Multigrid method using Gauss-Seidel 

smoother is proved to be more effective for the solution of convection diffusion equation with given peclet 

number. Our numerical works show that multigrid method with fourth order compact scheme is more 

accurate than the second order central difference scheme, different figures show error graphs and residual 

norm.   

 

     Conclusion 

In this research work, we have studied fourth order compact difference scheme with uniform mesh points by 

discretization of the two dimensional convection-diffusion equation. We have studied this problem with 

boundary conditions and developed a multigrid method to solve the given system of equations efficiently.  

The main advantage of this method is to solve the convection diffusion equation with peclet number (𝑝 =

0.00001) with high efficiency. Moreover it was found that multigrid method with Gauss-Seidel smoother 

works very fast which is based on fourth order compact difference scheme. 

        We conducted numerical experiments to test the accuracy of the multigrid method and found that 

multigrid method with fourth order compact scheme is more accurate and faster than the second order central 

difference scheme.  
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