Design, Synthesis and Cytotoxic studies of triazole linked hydrazones

Irfan Ahmad Khan¹, Freeha Hafeez^{1*}, Muhammad Suleman¹, Ramsha Iftikhar², Muniba Fatima¹, Komal Sana¹, Asma Zafar¹, Muhammad Arslan¹, Sundas Aslam¹, Mamona¹, Irum Shahzadi³, Syed Ali Hassan Naqvi¹ ¹Department of Chemistry, Faculty of Engineering and Applied Sciences, Riphah International University

Faisalabad, Faisalabad, Pakistan

²School of Chemistry, University of New South Wales Sydney, Australia

³Department of Chemistry, Government College for Women, Samanabad, Faisalabad

*Correspondence

Abstract

Triazoles have been classified as previliged heterocyclic moieties which displayed a broad spectrum of pharmacological and biological properties. This article reports the synthesis of triazole linked derivatives and cytotoxic properties of these derivatives. Among the prepared derivatives 8a-8g, best result were exhibited by 8g. **Introduction**

Synthesis and development of new compounds has vastly lagged behind antimicrobials and heart medications [1]. Triazoles belong to heterocyclic compounds containing a 5-membered ring with 2-C as well as 3-N molecules [2]. Azoles has been classified as unique classes of N containing heterocycles that displayed numerous organic accomplishments like, anti-bacterial,[3] antianti-fungal,[4] malarial.[4] anti-HIV.[5] antiinflammatory [6] and anti-TB [7] properties. In certain, triazole as well as 1,2,3- triazole, 1,2,4triazole, benzotriazole, triazolopyrimidine and their products must involve constant awareness in the pharmaceutical chemistry, as well as certain medicines presently in usage was established on triazoles particularly 1,2,3-triazole moiety like anti-HIV reagent TSAO, [8] antibiotic Cefatrizine, [9] antibacterial reagent Tazobactum [10] and anti-cancer [11] agent CA1 fig 1 [12].

1

Hydrazones, that was manufactured by refluxing acid hydrazides by appropriate carbonyl compounds, display altered use possibilities due to their organic accomplishments, and their metal complex as well as corrosion preventing capacities [13, 14]. Hydrazones must stimulated scholars to manufacture their new products due to their preordained bio-activity as well as efficiency in pharmaceutical interaction [15, 16]. This investigation was an anticipation to discover particular novel as well as further potent antimicrobial as well as antioxidant reagents which competitively impedes side effects as well as improved efficiency to heal pathogenic infections.

Presently, 2H-1,2,3-triazoles was presence useful into numerous fields [17, 18] with their various organic activity as well as single photonic possessions. The procedure, though, cannot be prolonged to the production of 2-side products 1,2,3-triazoles,[19] which correspondingly occur in numerous organically dynamic reagents. For instance, both Suvorexant, a medication for the cure of main sleeplessness [20] as well as Seltorexant, a extremely selective OX2R antagonist,[21] have 2-aryl-side product 1,2,3-triazole moieties (Figure 1).

The significance of 2-aryl-side products 1, 2, 3-triazoles as pharmaceutical reagents has subsequently encouraged the progress of appropriate manufactured techniques to this discussion of complexes [17, 22-26]. Recent ten years, hydrazone products remained extensively studied as a useful pharma-cophore theme for the scheme of new AEDs [4, 27].

MATERIALS AND METHODS

Infra-red spectrum of the manufactured complexes was noticed on the Burker FT-Infrared spectrometer. Nuclear magnetic resonance was obtained on the Burker FT-Infrared spectrometer typical AV-400 at 400 Mega Hertz. M.p of manufactured complexes was present in glass vessels by used the Gallenkamp equipment. The manufactured complex was distilled by column chromatography as well as recrystallization process using ethanol as well as dichloro-benzoic acid as reagents. Thin layer chromatography take place on precoated Si gel using 60 F254 plates by logical grade solvent such as CH₃OH, dichloro benzoic acid.

Production of 4-amiino-5-(o-chloro-phenyl)-4H-1,2,4-trizole-3-thiol

4-amino-5-(o-chloro-phenyl)-3H-1,2,4-triazole-3thiol remained manufactured by treating 5-(o-chlorophenyl)-1,3,4-oxa-diazole-2-thiol (00.10g, 0.0004mol) in the occurrence of Hydrazine monohydrate by CH_3CH_2OH as solvent under reflux for 12h. The accomplishment of the process remained scrutinized by Thin layer chromatography. Rough creation afforded in 35% product.

[TLC: P.E/E.A 9:1, Rf = 0.66]

Production of aryl-hydrazones from triazoles derivatives

Consistent tri-azole derivatives (0.7g, 0.002mol) as well as numerous side products RCHO (1.038 g, 0.02mol) remained melted in CH₃OH as well as sonicated for one and half hours. Cool the process mixture at less heat to give unsophisticated solid product. Rudimentary manufactured remained more distilled by re-crystallization.

Hemolytic Assay

3 mL sample remained occupied since human plasma, centrifuged (to separate fluid) for 5min at 1000 multiply by g. Red blood cells was iso-lated melted in phosphate buffer PH 7.4 salts as well as splashed. Synthesized complexes mixture (10mg/mL) remained supplementary (20uL) to 180 uL of erythrocytes (red blood cells) suspension as well as cooled for half hour. Dimethyl sulfoxide (DMSO) taken as a negative control as well as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid was taken as a positive control. Percentage hemolysis was calculated by using the formula.

Thrombolytic Assay

1 mL sample was taken from human blood, at room temperature that was incubated to pre-weigh for one hour. Subsequently coagulation, the serum remained completely detached as well as all eppendorfs stayed reweighed to control the coagulate bulk. Model (100mL) was added as well as placed at normal human body temperature (37 °C) for 180 minutes as well as clot lysis was detected. Dimethyl sulfoxide remained correspondingly additional in a reinforcement containing of tubes that act as a negative thrombo-lytic control while ABTS as positive control. Eppendorfs remained weighed over as well as with a change in bulk later coagulation % age of thrombo-lysis remained intended.

Fig 2. ¹H-NMR and ¹³C-NMR analysis of compounds.

Table 1. Hemolytic, and thrombolytic activity of target compounds 8a-8g.

Sr.	Der	% age of	%age of	
#	ivat	Hemolysis ±	Thrombolysis	
	ives	SD	\pm SD	
1	8a	5.12 ± 0.02	66.2 ± 0.081	
2	8b	4.6 ± 0.045	68.2 ± 0.081	
3	8c	0.4 ± 0.004	42.05 ± 0.008	
4	8d	1.7 ± 0.016	66.8 ± 0.081	
5	8e	0.8 ± 0.012	66.5 ± 0.81	
6	8f	2.1 ± 0.003	56.8 ± 0.081	
7	8g	0.1 ± 0.007	76.8 ± 0.082	
Sta	AB	95.9	86	
nd	TS			
ard				

Table 2. Spectra	l data of	compounds	8a- 8g.
------------------	-----------	-----------	---------

Compounds	Melting Point	Yields %	
8a	180 °C	62	m.p 180 °C; IR (KBr): v 3339 (N-H), 1542 (C = N), 1465 (Ph), 1446 (C = C), 1330
			(C–N). 500MHz (1H-NMR, DMSO-d6, δ/ppm): 6.96 (d, 2H, Ar-H, J = 1.5 Hz),
			7.26 (dd, 1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.28 (dd, 1H, Ar-H), 7.45 (d, 1H, Ar-H, J
			= 1.5 Hz), 7.52 (d, 1H, Ar-H, $J = 1.5$ Hz), 8.28 (c, 1H, N – CH) 13 11 (c, 1H, SH)
			100 MHz (13C-NMR, DMSO- <i>d</i> 6, δ/ppm): 126 6126 67 127 53 128 03 129 11
			129.47, 130.24, 133.12, 133.15, 134.46
	105.00		Ms m/z (ES+) 314.0393
8b	187 C	01	(C = N), 1470 (Ph), 1450 (C = C), 1334
			(C–N). 500MHz (1H-NMR, DMSO-d6, δ/ppm): 2.38 (s, 3H, CH3), 7.07–7.24 (m,
			4H, Ar-H), 7.28 (dd, 1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.45 (d, 1H, Ar-H, <i>J</i> = 1.5 Hz),
			7.65 (d, 1H, Ar-H, <i>J</i> = 1.5 Hz), 7.28 (dd, 1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.95, (s,
			1H, N = CH), 13.01 (s, 1H, SH). 100 MHz (13C-NMR, DMSO-d6, δ/ppm): 20.06
			(CH3), 126.36, 126.64, 126.67, 126.77, 128.03, 128.83,130.24, 130.63, 131.15,
			133.12, 133.38, 136.75, (Ar-C), 139.03, 152.92, 171.93 (N = C). MS m/z (ES+)
	192 °C	62	328.0549 m.p. 192 °C: IR (KBr): p. 3354 (N-H), 1542
8c			(C = N), 1473 (Ph), 1451 (C = C), 1339 (C-N) 500MHz (1H-NMR DMSO-d6
			δ /ppm): 7.23–7.40 (m, 4H, Ar-H), 7.45 (d) LAT μ (g) (H) (h
			(d, 111, A1-1, $J = 1.5$ 112), 7.05 (d, 111, A1- H, $J = 1.5$ Hz), 7.28 (dd, 1H, Ar-H), 7.30 (dd 1H, Ar-H), 8.31 (s, 1H, N - CH)
			(dd, 111, 141-11), 0.51, (3, 111, 14 – C11), 13.01 (s, 1H, SH). 100 MHz (13C-NMR, DMSO d6 §/ppm); 20.06 (CH2) 126.26
			127.49, 127.91, 128.03, 129.35, 130.24,
			(Ar-C), 143.84, 152.92, 171.93 (N = C).
8d	201 °C	61	m.p 201 °C; IR (KBr): v 3356 (N-H), 1539
ou			(C = N), 1471 (Ph), 1449 (C = C), 1330 (C–N). 500MHz (1H-NMR, DMSO-d6,
			δ/ppm): 3.78 (s, 3H, OMe), 6.82 (d, 1H, Ar-H, J = 2.0 Hz), 6.92 (dd, 1H, Ar-H),
			7.20 (dd, 1H, Ar-H), 7.24 (d, 1H, Ar-H, J = 1.5 Hz), 7.28 (dd, 1H, Ar-H), 7.30 (dd,
			1H, Ar-H), 7.45 (d, 1H, Ar-H, J = 1.5 Hz), 7.65 (d, 1H, Ar-H, J = 1.5 Hz), 7.89, (s,
			1H, N = CH), 13.11 (s, 1H, SH). 100 MHz (13C-NMR, DMSO-d6, δ/ppm): 56.79
			(OCH3), 114.01, 121.50, 128.03, 128.47, 128.97, 130.24, 131.15, 160.0 (Ar-C),
			139.88, 152.92, 171.93 (N = C). MS m/z (ES+) 346.0469
8e	193 °C	62	m.p 193 °C; IR (KBr): υ 3346 (N-H), 1529 (C = N), 1469 (Ph), 1447 (C = C), 1333
			(C-N). 500MHz (1H-NMR, DMSO-d6, δ/ppm): 2.36 (s, 3H, Me), 6.91 (d, 2H, Ar-
			H, $J = 2.0$ Hz), 7.11 (d, 2H, Ar-H, $J = 1.5$ Hz), 7.28 (dd, 1H, Ar-H), 7.30 (dd, 1H,
			Ar-H), 7.44 (d, 1H, Ar-H, J = 1.5 Hz), 7.58 (d, 1H, Ar-H, J = 1.5 Hz), 8.26, (s,
			1H, N = CH), 13.31 (s, 1H, SH). 100 MHz (13C-NMR, DMSO-d6, δ/npm): 21.13
			(CH3), 126.36, 126.67, 127.84, 128.03, 129.29, 130.24, 131.15, 131.65, 133.12
			139.27 (Ar-C), 151.22, 152.92, 171.93 (N = C) MS w/z (FS1) 328 0540
8f	212 °C	62	m.p 212 °C; IR (KBr): v 3349 (N-H), 1526
01			(C = N), 1472 (Pil), 1449 (C = C), 1552 (C-N). 500MHz (1H-NMR, DMSO-d6, δ (mm)) 6 00 (d 2H. An H. $L = 2.0$ Hz)
			7.32 (d, 2H, Ar-H, J = 1.5 Hz), 7.28 (dd, JH, Ar-H, J = 2.0 Hz), 7.32 (d, 2H, Ar-H, J = 1.5 Hz), 7.28 (dd, JH, Ar-H), 7.20 (dd, JH, A
			1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.41 (d, 1H, Ar-H, $J = 1.5$ Hz), 7.57 (d, 1H, Ar-H,
			J = 1.5 Hz, 8.27, (s, 1H, N = CH), 15.21 (s, 1H, SH). 100 MHz (13C-NMR,
			DMSO- <i>d</i> 6, 8/ppm): 21.13 (CH3), 126.36, 126.67, 127.84, 128.03, 129.29, 130.24,
			151.15, 131.65, 133.12, 139.27 (Ar-C), 151.22, 152.92, 171.93 (N = C). MS m/z
80	202 °C	61	(ES+) 348.0003 m.p 202 °C; IR (KBr): υ 3351 (N-H), 1532
og			(C = N), 1473 (Ph), 1451 (C = C), 1339 (C-N). 500MHz (1H-NMR, DMSO-d6,
			δ/ppm): 6.83 (d, 2H, Ar-H, J = 2.0 Hz), 6.88 (d, 2H, Ar-H, J = 1.5 Hz), 7.28 (dd,
			1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.41 (d, 1H, Ar-H, J = 1.5 Hz), 7.57 (d, 1H, Ar-H,
			J = 1.5 Hz), 8.21, (s, 1H, N = CH), 13.21 (s, 1H, SH). 100 MHz (13C-NMR.
			DMSO-d6, δ/ppm): 56.04 (OCH3), 114.52, 126.36, 126.67, 127.11, 128.03
			129.62, 130.24, 131.15, 133.12, 161.03 (Ar-C) 151.22, 152.92, 171.03 (N - C)
			(M=C), 151.22, 152.92, 1/1.95 (N=C). MS m/z (ES+) 346.0045

DISCUSSION

The production of compounds hydrazones 8a-8e remained attained in 60-62% product by relating conservative warming process under reflux for 120 minutes although similar reaction was accepted out in sonication for half hour as well as preferred byproducts remained attained in 60-80% yield in time. Completely the manufactured complexes were characterized by infrared as well as nuclear magnetic resonance.

Spectral analysis of compound

Compound 8f was synthesized; structure was confirmed by ¹H, ¹³C nuclear magnetic resonance, Infrared and by molecular ion peak M⁺ at m/z 348.0003 in MS-E1 spectrum. Different absorption spectra were used to describe various functional groups in IR (KBr): v 3349 (N-H), 1526 (C = N), 1472 (Ph), 1449 (C = C), 1332 (C-N). 500MHz (1H-NMR, DMSO-*d*6, δ /ppm): 6.90 (d, 2H, Ar-H, *J* = 2.0 Hz), 7.32 (d, 2H, Ar-H, J = 1.5 Hz), 7.28 (dd, 1H, Ar-H), 7.30 (dd, 1H, Ar-H), 7.41 (d, 1H, Ar-H, J =1.5 Hz), 7.57 (d, 1H, Ar-H, J = 1.5 Hz), 8.27, (s, 1H, N = CH), 13.21 (s, 1H, SH). 100 MHz (13C-NMR, DMSO-d6, δ /ppm): 21.13 (CH3), 126.36, 126.67, 127.84, 128.03, 129.29, 130.24, 131.15, 131.65, 133.12, 139.27 (Ar-C), 151.22, 152.92, 171.93 (N = C).

Hemolytic activity

The hemolytic activity of new compounds (8a-8g) was tested as well as they were found to induce poor to moderate hemolysis (Table 1 in term of percentage hemolysis). Among these compounds, 8c-8f was found least toxic, while the 8a and 8b were found highly toxic [28, 29].

Thrombolytic activity

All the novel compounds showed moderate clotlysis activity (table 1). Among the synthesized compounds, maximum thrombolytic activity was observed in compound 8g (76.8 ± 0.082) while all other compounds exhibited low clotlysis activity [28, 30, 31].

Conclusion

A series of novel biologically active derivatives has been synthesized and evaluated for their cytotoxic studies. The results displayed these molecules as potent drug candidates for further studies.

REFERENCES

- 1. Trösken, E.R., et al., Comparison of lanosterol- 14α -demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology, 2006. **228**(1): p. 24-32.
- 2. Pasqualotto, A.C., *Aspergillosis: from diagnosis to prevention*. Vol. 422. 2010: Springer.
- 3. Hiemstra, P., et al., *Antibacterial activity of antileukoprotease*. Infection and immunity, 1996. **64**(11): p. 4520-4524.
- Angelova, V., et al., Recent developments of hydrazide/hydrazone derivatives and their analogs as anticonvulsant agents in animal models. Drug Development Research, 2016.
 77(7): p. 379-392.
- De Clercq, E., New developments in anti-HIV chemotherapy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2002. 1587(2-3): p. 258-275.
- 6. Lee, S.-J., et al., Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IkappaB kinase-dependent NF-kappaB activation. Molecules and cells, 2003. **16**(1): p. 97-105.
- Shi, R., N. Itagaki, and I. Sugawara, Overview of anti-tuberculosis (TB) drugs and their resistance mechanisms. Mini reviews in medicinal chemistry, 2007. 7(11): p. 1177-1185.
- 8. Bagala, I., Community Participation and Sustainability of HIV Aids Care: A case study of TASO, Tororo. 2018, Uganda Management Institute.
- 9. Dunn, G., et al., Orally active 7phenylglycyl cephalosporins structureactivity studies related to cefatrizine (SK&F 60771). The Journal of Antibiotics, 1976. **29**(1): p. 65-80.
- 10. Cheng, L., et al., *Piperacillin-tazobactam* versus other antibacterial agents for treatment of bloodstream infections due to AmpC &-lactamase-producing

Enterobacteriaceae. Antimicrobial agents and chemotherapy, 2017. **61**(6): p. e00276-17.

- 11. O Patil, P., et al., *Recent advancement in discovery and development of natural product combretastatin-inspired anticancer agents.* Anti-Cancer Agents *in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2015.* **15**(8): p. 955-969.
- Zhang, S., et al., *Triazole derivatives and their anti-tubercular activity*. European journal of medicinal chemistry, 2017.
 138: p. 501-513.
- 13. Wamhoff, H.i., *1, 2, 3-Triazoles and their benzo derivatives*. 1984.
- Lu, L.H., J.H. Wu, and C.H. Yang, *Preparation of 1H-1, 2, 3-Triazoles by Cuprous Ion Mediated Cycloaddition of Terminal Alkyne and Sodium Azide.* Journal of the Chinese Chemical Society, 2008. 55(2): p. 414-417.
- Belskaya, N., J. Subbotina, and S. Lesogorova, *Synthesis of 2 H-1, 2, 3-Triazoles*. Chemistry of 1, 2, 3-triazoles, 2015: p. 51-116.
- 16. Zafar, A., et al., Suzuki Coupling: A powerful tool for the synthesis of natural products: A review.
- 17. Liu, Y., et al., *Efficient synthesis of N-2-aryl-1, 2, 3-triazole fluorophores via post-triazole arylation*. Organic Letters, 2008. **10**(23): p. 5389-5392.
- Yan, W., et al., N-2-Aryl-1, 2, 3-triazoles: A Novel Class of UV/Blue-Light-Emitting Fluorophores with Tunable Optical Properties. Chemistry–A European Journal, 2011. 17(18): p. 5011-5018.
- 19. Decuypere, E., et al., *Copper-Catalyzed Aza-Iminosydnone-Alkyne Cycloaddition Reaction Discovered by Screening*. ACS Catalysis, 2018. **8**(12): p. 11882-11888.
- Cox, C.D., et al., Discovery of the dual orexin receptor antagonist [(7 R)-4-(5chloro-1, 3-benzoxazol-2-yl)-7-methyl-1, 4-diazepan-1-yl][5-methyl-2-(2 H-1, 2, 3-triazol-2-yl) phenyl] methanone (MK-4305) for the treatment of insomnia.

Journal of medicinal chemistry, 2010. **53**(14): p. 5320-5332.

- 21. Marson, C.M., Saturated heterocycles with applications in medicinal chemistry, in Advances in Heterocyclic Chemistry. 2017, Elsevier. p. 13-33.
- Li, Z., et al., Highly regioselective radical transformation of N-sulfonyl-1, 2, 3-triazoles in air. Organic letters, 2019.
 21(16): p. 6413-6417.
- Wang, X.-j., et al., Bromo-directed N-2 alkylation of NH-1, 2, 3-triazoles: Efficient synthesis of poly-substituted 1, 2, 3-triazoles. Organic Letters, 2009. 11(23): p. 5490-5493.
- 24. Tang, W.J. and Y.Z. Hu, Simple and Efficient One-Pot Synthesis of 2, 4-Diaryl-1, 2, 3-triazoles. Synthetic communications, 2006. **36**(17): p. 2461-2468.
- Guru, M.M. and T. Punniyamurthy, Copper (II)-Catalyzed Aerobic Oxidative Synthesis of Substituted 1, 2, 3-and 1, 2, 4-Triazoles from Bisarylhydrazones via C-H Functionalization/C-C/N-N/C-N Bonds Formation. The Journal of Organic Chemistry, 2012. 77(11): p. 5063-5073.
- Hann, R.M. and C. Hudson, *The action* of copper sulfate on phenylosazones of the sugars. Phenyl-D-glucosotriazole. Journal of the American Chemical Society, 1944. 66(5): p. 735-738.
- Tripathi, L., R. Singh, and J.P. Stables, Design & synthesis of N'-[substituted] pyridine-4-carbohydrazides as potential anticonvulsant agents. European journal of medicinal chemistry, 2011.
 46(2): p. 509-518.
- Hafeez, F., et al., Facile One-Pot Approach to the Synthesis of Alkyl Piperazine-1-carbodithioates as Hemolytic and Thrombolytic Agents. Russian Journal of Organic Chemistry, 2022. 58(6): p. 884-890.
- 29. Hafeez, F., et al., Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based

Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. Molecules, 2022. **27**(15): p. 4776.

- Hafeez, F., et al., Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. Molecules, 2022. 27(15).
- Hafeez, F., et al., Synthesis and anticancer evaluation of 2-oxo-2-(arylamino) ethyl 4-phenylpiperazine-1carbodithioates. Pak. J. Pharm. Sci, 2021. 34(1): p. 353-357.

AUTHORS

First Author – Mr. Irfan Ahmad Khan, M.Phil Chemistry, Riphah International University, faisalabad

Second Author – Dr. Freeha Hafeez, PhD Chemistry, Riphah International University, faisalabad

Third Author – Dr. Muhammad Suleman, PhD Chemistry, Riphah International University, faisalabad.

Fourth Author – Ramsha Iftikhar, PhD Researcher, School of Chemistry, UNSW, Australia

Fifth Author – Ms. Muniba Fatima, Mphil Scholar, Riphah International University, faisalabad

Correspondence Author – Dr. Freeha Hafeez, PhD Chemistry, Riphah International University, faisalabad