
Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

Evaluation of the existing Metamorphic Relations for

Machine Learning Classifiers from a Whitebox Coverage

perspective

Sadia Ashraf*, Dr. Aamir Nadeem**, Dr. Salma Imtiaz**

* Department of Software Engineering, IIUI

** Department of Software Engineering, CUST

Abstract- Machine learning (ML) is one of the most popular area

in the field of AI, which has led to a rapid rise in ML

applications. Most of these applications use libraries like Sci-kit

learn and Weka which implement these algorithms. Testing these

ML applications is difficult because they suffer from the oracle

problem and traditional testing techniques generally do not work

without oracles. Metamorphic testing is used instead of the

traditional testing techniques for these applications. Although the

code for the actual application is usually too simple to be need

formal testing but the implementation of the algorithms within

the libraries is not. This work evaluates the existing metamorphic

relations in the literature for their effectives in detecting faults

and finds the kill rate of these metamorphic relations when they

are used to test the implementations for 5 classifiers (ANN, ID3,

KNN, Naïve Bayes, SVM) from Sci-kit learn. It also finds the

statement and branch coverage when using these Metamorphic

relations and finds an indirect relationship between coverage and

kill rate which can be exploited to improve the kill rate for the

test suites.

Index Terms- Metamorphic Testing, Metamorphic Relations,

Oracle, Machine Learning.

I. INTRODUCTION

etamorphic Testing (MR) is a technique used for software

which cannot be tested with conventional testing methods.

It tests software based on its expected behavior as opposed to

expected outputs, which makes it a popular choice for complex

systems that do not have a fixed output for a given input and are

characterized by randomness. MRs are used to test Autonomous

Vehicles [1-9], where the possible noise in the environment is

simulated and fed to the systems to test it for the issues it might

face on the road. It is popular in testing stochastic software [10-

15], that does not have oracles to guide the testing process. NLP

based systems [9, 16-28] are tested with metamorphic tests due

to the semantic nature of these systems. A fairly new area where

metamorphic testing is being used is fairness testing [28-35],

where the systems are tested for bias and discrimination. Most of

these systems suffer from the oracle problem. The oracle

problem makes it difficult to test the systems because the correct

outputs are not known in advance to be able to compare the

outcomes of the test cases with these outcomes. Testing without

oracles might result in insufficient testing since the traditional

coverage-based techniques are replaced by metamorphic

relations.[36, 37]

 Metamorphic Relations are used in the absence of oracles

where normal testing techniques like Blackbox and White box

testing cannot be applied. Metamorphic Testing is used to derive

expected outputs, when the input and the expected behavior is

known. The need for oracles is eliminated, when MRs are used to

test the system. The accuracy of the system is determined by its

conformance to the MR and if the system deviates from the

expected behavior then it indicates a fault in the system.

Metamorphic Testing is useful for regression testing [38, 39],

where the system is tested for changes in the output after the

updates are made in it. Machine Learning Systems are generally

tested with MRs, since these systems do not have oracles to

guide the testing process.

 Machine Learning systems like classifiers are used to make

predictions based on the patterns learned from the given data.

The expected output for them is no available and therefore these

systems are tested with MRs’. The popular MRs’ for classifiers

are the MRs by Xie that are based on the necessary properties of

ML Classifiers. Xie’s [13] MRs are divided into six categories,

each representing a property of the ML Classifiers. Data

Transformation, applies affine transformation on the data. Data

Permutation, applies permutations to the classes, Attribute

Addition, adds uninformative attributes to the dataset. Data and

Prediction augmentation repeats the rows in such a way as to

not affect prediction. Class Addition and Modification

duplicates data in such a way that the accuracy is not affected.

Class Removal deletes records, etc so the accuracy remains

unaffected.

 These MRs work by creating a model by training the algorithm

with the original dataset. The follow-up dataset is created by

modifying it according to the MRs and the follow-up model is

created with the modified dataset. Both the models should work

exactly in the same way because the modifications introduced by

Xie’s MRs[13] do not affect the correlations between the

attributes. Therefor any variation in the predictions made by the

two models is due to the faults in the system. The faults are

located when the follow-up and original models vary in accuracy.

M

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

 The performance of the Test Suite in detecting faults is known

as the fault detection effectiveness. The higher the effectiveness

of a Test Suite the better it is at detecting faults. Fault detection

effectiveness is measured in literature [37, 40, 41] using mutation

testing. Mutation testing adds artificial faults called mutants to

the code and then runs the test suite on it to see if the fault is

detected. The number of mutants that the Test Suite detects,

determines the kill rate of the test suite.

 This work evaluates the effectiveness of Xie’s MRs by

applying mutation testing on the MRs. It also measures

Statement and Branch coverage of the code when the MRs are

run. The code used for this work is the implementation of the sci-

kit learn’s classifiers. Five most commonly used classifiers [42-

46] that are used for this study are Naïve Bayes, ID3 (Iterative

Dichotomiser), SVM (Support Vector Machine), KNN (K-

Nearest Neighbor) & ANN (Artificial Neural Network).

 Xie’s MRs consists of 11 MRs which cover different aspects

of the machine learning algorithms. We evaluated all 11 MRs

with 5 different algorithms and two different datasets. This work

reports the kill rate for the MRs and the possible cause for the

kill rate being low from a white box coverage point of view. The

motivation for this work is to find the correlation between the kill

rate and the uncovered mutants. The findings from this work can

be used explore the direction of coverage for machine learning

algorithms. Future work to improve the effectiveness of the MRs

can be done based on the findings in this work.

 The observations made in our work are that most mutants are

never executed because they are in the uncovered part of the

code. The MR does not exercise almost 50% of the code for the

algorithm. The kill rate for the MRs ranges from 0% to 21%

depending on the number of mutants that are covered and the

number of mutants that are added to the code.

 Generally, the code coverage does not have a direct

correlation with the mutant kill rate [37]. The kill rate depends on

multiple factors like the type and diversity of the mutants used

along with the quality of the test suite. But the number of

mutants being killed is directly dependent on the no of mutants

that are exercised. If the mutants are never exercised then they do

not contribute to the kill rate of the Test Suite. Any MRs that can

improve the coverage might result in a test suite with a higher

kill rate and is more effective in detecting faults in general.

 The rest of this paper contains the background where existing

work related to this study is discussed. After that the actual study

is discussed along with the observations made in the accuracy,

kill rate and coverage section. The conclusion and future work

sections discuss the possible issues with this work and the

direction the future work can take.

article guides a stepwise walkthrough by Experts for writing a

successful journal or a research paper starting from inception of

ideas till their publications. Research papers.

 are highly recognized in scholar fraternity and form a core part

of PhD curriculum. Research scholars publish their research

work in leading journals to complete their grades. In addition, the

published research work also provides a big weight-age to get

admissions in reputed varsity. Now, here we enlist the proven

steps to publish the research paper in a journal.

II. BACKGROUND

 This section explains basics of Machine learning, Metamorphic

testing along with the formal definitions for the techniques being

used in this work. Related work in the area is also discussed.

Definitions:

Metamorphic Testing

In a system where f is the target algorithm or function. The

metamorphic relation (MR) can be described as a property of f

over a sequence of two or more inputs, denoted as (a₁, a₂, ..., ai),

for i > =2, with the corresponding outputs for the sequence of

inputs are (f(a₁), f(a₂), ..., f(ai)).

Metamorphic relations are a relation R ⊆ X₁ × X₂ × ... × Xi × Y₁

× Y₂ × ... × Yi, where ⊆ consists of a subset of relations. X₁ × X₂

× ... × Xi and Y₁ × Y₂ × ... × Yi is the Cartesian product of the

input domain and the output domain. Therefore, we can say R(a₁,

a₂, ..., ai , f(a₁), f(a₂), ..., f(ai)) to indicate that the tuple (a₁, a₂, ...,

ai , f(a₁), f(a₂), ..., f(ai)) belongs to R.

Machine Learning Classifiers

Formally, a classifier is a mapping of a function C: X → Y,

where X is a set of the input domain or feature space, and Y is the

output space, which contains the class labels that the model can

assign to the given input. For a given input vector x ∈ X, the

classifier assigns a class label y ∈ Y to that instance, hence

making a prediction based on the data it was trained on. The

formal definitions for the 5 classifiers used in this work are given

below:

KNN (k-Nearest Neighbors):

If X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)} is a training dataset where xi is

the vector of feature and yi is the output label for that feature.

Where xi ϵ ℝⁿ and yi ϵ Y, which is a set of all the possible class

labels. Given a distance metric d(x, x'), where d: ℝⁿ × ℝⁿ → ℝ

represents the distance between two feature vectors, the KNN

algorithm calculates the distances between the new instance x*

and all training instances: D = {(d(x*, x₁), y₁), (d(x*, x₂), y₂), ...,

(d(x*, xₙ), yₙ)}, where D is the set of Euclidean distances sorted in

ascending order and the Euclidean distance between vectors x

and x' is

d(x, x') = √(∑(xᵢ - x'ᵢ)²)

ID3 (Iterative Dichotomiser 3):

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈

ℝⁿ consists of the features or attributes of X and yᵢ ∈ Y is a set of

all possible class label for X. ID3 recursively partitions the

feature space based on information gain, which in turn depends

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

on the entropy of the chaos in the given data. The Entropy of a

target variable is given below:

Y: H(Y) = -∑(p(y) * log₂(p(y)))

The Information gain for a feature X, given the target Y is given

by the formula below:

 IG(X, Y) = H(Y) - ∑((|Xᵥ| / |X|) * H(Y|Xᵥ))

where |Xᵥ| is the number of instances in X with value v.

ANN (Artificial Neural Networks):

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈

ℝⁿ is a set or real number that represent the feature vector for X

and yᵢ ∈ Y is the corresponding target class label. Given an input

vector x, the forward propagation in ANN follows the steps

below:

The input layer is initialized with the value of x. Each layer in the

hidden layers and the output layer’s activation formula is

computed using the formulae below:

For each hidden layer neuron j:

zⱼ = ∑(wⱼᵢ * aᵢ) + bⱼ aⱼ = σ(zⱼ)

For each output layer neuron k:

zₖ = ∑(wₖⱼ * aⱼ) + bₖ aₖ = σ(zₖ)

where wⱼᵢ and wₖⱼ are the weights, bⱼ and bₖ are the biases, aᵢ and

aⱼ are the activations of the input and hidden layer neurons,

respectively, and σ(⋅) is the activation function.

SVM (Support Vector Machine):

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈

ℝⁿ is a vector made of real numbers that make up the features of

the dataset and yᵢ ∈ Y is the set of target class label. SVM finds

an optimal hyperplane in the feature space in order to separate

the data points from various different classes with a maximum

margin. For X, the SVM is defined as follows:

For xᵢ, the feature vector is mapped into a higher-dimensional

feature space with the following kernel function, where ℋ is a

high-dimensional space.

ϕ: ℝⁿ → ℋ

ℋ contains the optimal hyperplane which maximizes the margin

between the support vectors, while the SVM problem is

formulated as follows:

min ½||w||² + C∑ξᵢ s.t. yᵢ(w⋅ϕ(xᵢ) + b) ≥ 1 - ξᵢ ξᵢ ≥ 0

where w is the weight vector, b is the bias term, C is the

regularization parameter, ξᵢ are the slack variables, and yᵢ

represents the target class label (+1 or -1).

New instances are classified based on the sign of

(w⋅ϕ(x) + b).

Naive Bayes:

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, y, where xᵢ = (xᵢ₁,

xᵢ₂, ..., xᵢₘ) ∈ ℝᵐ is a set of real numbers that make up the feature

vectors of the datset and yᵢ ∈ Y , where Y is the set of target class

labels. For P(y) being the prior probabilities for each class y

based on X, the conditional probabilities are P(xⱼ|y) for each

feature xⱼ given each class y. New instances x* are classified by

calculating the posterior probabilities P(y|x*) for each class y and

selecting the class with the highest probability using the given

formulae

Bayes' theorem:

P(y|x) = (P(x|y) * P(y)) / P(x)

Naive Bayes assumption (feature independence):

P(x|y) = ∏ P(xⱼ|y)

Xie’s Metamorphic Relations

Xie et al presented 11 metamorphic relations for machine

learning classifiers. These metamorphic relations represent the

necessary properties of Machine learning algorithms. The

following table discusses the MRs in detail.

Xie’s Metamorphic Relations

Sr

no
Name Category Description

1

Consistence

with affine

transformation

Transformation

This MR states that the ML model should be immune to any affine

transformations that are applied to the dataset. If we multiply any

column with a constant number and add a constant number to it. The

model trained on the new dataset should be no different from the

original model.

2
Permutation of

class labels
Permutation

If the class labels in the dataset are swapped in a ‘one to one’ manner

than the new dataset should give the same output as the original

dataset.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

3
Permutation of

the attribute

If the values of the attributes are shuffled within the training set as

well as the test set, then the model created with the follow-up dataset

should behave no different than the original model.

4

Addition of

uninformative

attributes

Attribute

Addition

If a new attribute is added to the dataset that has no association or

correlation with any class label, then this shouldn’t affect the

outcome of the follow-up model.

5

Addition of

informative

attributes

If an attribute is added to the training dataset that is strongly

associated with only one class label and it is not associated with the

other class labels then this should not affect the predictions made by

the follow-up dataset.

6

Consistence

with re-

prediction
Prediction

Augmentation

If we take a single test case along with its class label and append it to

the training data. Then this will not affect the predictions for the

same test case

7

Additional

training

sample

If a few test cases with a certain label along with their class labels are

duplicated and added back to the dataset. This should not affect the

output for the follow-up models predictions for that class.

8

Addition of

classes by

duplicating

samples

Duplication

If all the samples which are associated with class labels accept one

particular class label ‘l’ are duplicated and then their class labels are

changed by appending a * with them then the unduplicated samples

will still have the same prediction as before.

9

Addition of

classes by re-

labeling

samples

If all the samples accept for the ones that are associated with a certain

class label are relabeled, the predictions for the specific class should

still remain the same.

10
Removal of

classes

Class Removal

If an entire class is removed from the training data which is other

than a specific class label ‘l’, then all the predictions made by the

algorithm regarding ‘l’ should remain unaffected.

11
Removal of

samples

If some random samples are removed from the training set along

with their class labels where they are not associated with the class

label ‘l’ then the model’s predictions for ‘l’ should remain

unchanged.

III. ACCURACY, COVERAGE AND KILL RATE

Accuracy for a model is the no of correct predictions made by a

model as compared to the actual predictions [13, 47-50]. It is

commonly used as a metric to evaluate machine learning

classifiers [13, 47]. Xie’s metamorphic relations are based on the

consistency of the prediction when applying the MRs. Therefore,

if the MRs are applied correctly, the overall accuracy of the

results should not change too much. The tables below give the

accuracy for the classifiers when the MRs are applied to them

with two datasets. There is very little change in the accuracy of

the test suites when the MRs are applied.

ACCURACIES FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH IRIS

 SVM KNN ANN NB ID3

No MR 1.0 1.0 1.0 1.0 1.0

MR-0 0.93 .98 0.96 .96 0.98

MR-1.1 1.0 1.0 1 1 1

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

MR-1.2 1.0 .98 1 1 1

MR-2.1 0.98 1.0 1 1 1

MR-2.2 1.0 .98 0.98 .98 1

MR-3.1 1.0 1.0 .97 .98 1

MR-3.2 1.0 .98 .96 .98 1

MR-4.1 1.0 1.0 1 .97 1

MR-4.2 0.87 1.0 .96 .96 .98

MR-5.1 1.0 .98 1 1 1

MR-5.2 0.98 .97 .97 .97 .97

Table 1: Accuracy for Iris

Since the accuracies do not change too much after the MRs’ are

applied, that shows that the Xie’s MRs were correctly

implemented and they are working as they should. If the

accuracies change too much after the MRs are applied, that

indicates there are issues, either in the implementation or the MR

itself is faulty. The variation in the accuracy depends on the

accuracy of the model as well.

ACCURACIES FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH TITANIC

 SVM KNN ANN NB ID3

No MR 1.0 1.0 1.0 1.0 1.0

MR-0 1.0 1.0 1.0 1.0 1.0

MR-1.1 1.0 1.0 1.0 1.0 1.0

MR-1.2 1.0 1.0 1.0 1.0 1.0

MR-2.1 1.0 1.0 1.0 1.0 1.0

MR-2.2 1.0 1.0 1.0 1.0 1.0

MR-3.1 1.0 1.0 1.0 1.0 1.0

MR-3.2 1.0 1.0 1.0 1.0 1.0

MR-4.1 1.0 1.0 1.0 1.0 1.0

MR-4.2 1.0 1.0 0.98 1.0 1.0

MR-5.1 1.0 0.98 1.0 0.98 0.98

MR-5.2 0.98 1.0 1.0 1.0 1.0

Table 2: Accuracy for Titanic

Coverage is a metric often used in classic testing techniques [51-

55] that is used to measure the extent to which the test cases

cover the code. It represents the thoroughness of the testing

process and provides the assurance that all or most parts of the

system under test is covered at least once. It also is a good

guideline to assess the need of additional testing. When

metamorphic testing is used, coverage is not taken into

consideration, which means that there is a possibility that a

system needed more testing where the testing effort is stopped

prematurely, or vice versa. The tables below show the coverage

achieved when Xie’s MRs are applied to test the code for the

implementation of the chosen classifiers from the Scikit-learn

library for python [42-46, 54]. The coverage values recorded

here are for statement coverage and branch coverage, which are

two types of white box coverage [40, 41, 56] i.e. the type of

testing where the code of the system under test is available.

Statement coverage is a testing criterion that aims to cover every

statement in the code at least once. It measures the lines of code

that were exercised at least once out of the total number of lines

in the code, whereas the branch coverage attempts to cover all

the branches within the code at least once.

STATEMENT COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH IRIS

 SVM KNN ANN NB ID3

No MR 67/120 =55.8 59/37 = 62.7 156/362 = 43 63/123 = 51.22 124/265 = 46.7

MR-0 55.8 62.7 43 51.22 46.7

MR-1.1 55.8 62.7 43 51.22 46.7

MR-1.2 55.8 62.7 43 51.22 46.7

MR-2.1 55.8 62.7 43 51.22 46.7

MR-2.2 55.8 62.7 43 51.22 46.7

MR-3.1 55 62.7 43 51.22 46.7

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

MR-3.2 55.8 62.7 43 51.22 46.7

MR-4.1 55.8 62.7 43 51.22 46.7

MR-4.2 55.8 62.7 43 51.22 46.7

MR-5.1 55.8 62.7 43 51.22 46.7

MR-5.2 55.8 62.7 43 51.22 46.7

Table 3: Statement Coverage for Iris

 It is important to note that the coverage, be it statement

coverage or branch coverage is not correlated with the

metamorphic relations in any way and when dealing with simpler

code like that of KNN, achieving complete coverage can be a

simple matter of adding a few more tests to the system. But when

dealing with code that is complex and has a lot of nested

condition within each other like the code for ID3 and ANN

manually adding MTs becomes a tedious task and may cost a lot

of time and energy to do so. The coverage mentioned here is the

coverage that was recorded after training the sci-kit learn

algorithms with the two datasets and then finding their accuracy.

STATEMENT COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH TITANIC

 SVM KNN ANN NB ID3

No MR 55.8 51.78 42.3 46.39 48.4

MR-0 55.8 51.78 42.3 46.39 48.4

MR-1.1 55.8 51.78 42.3 46.39 48.4

MR-1.2 55.8 51.78 42.3 46.39 48.4

MR-2.1 55.8 51.78 42.3 46.39 48.4

MR-2.2 55.8 51.78 42.3 46.39 48.4

MR-3.1 55.8 51.78 42.3 46.39 48.4

MR-3.2 55.8 51.78 42.3 46.39 48.4

MR-4.1 55.8 51.78 42.3 46.39 48.4

MR-4.2 55.8 51.78 42.3 46.39 48.4

MR-5.1 55.8 51.78 42.3 46.39 48.4

MR-5.2 55.8 51.78 42.3 46.39 48.4

Table 4: Statement Coverage for Titanic

The tables below show the branch coverage of the classifiers

with Iris and Titanic. These tables show that the coverage

achieved is not affected by dataset being used and since all the

MRs make changes to the dataset, the coverage does not change

much from one MR to another.

BRANCH COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH IRIS

 SVM KNN ANN NB ID3

No MR 0 16.66 5 31.2 5

MR-0 0 16.66 5 31.2 5

MR-1.1 0 16.66 5 31.2 5

MR-1.2 0 16.66 5 31.2 5

MR-2.1 0 16.66 5 31.2 5

MR-2.2 0 16.66 5 31.2 5

MR-3.1 0 16.66 5 31.2 5

MR-3.2 0 16.66 5 31.2 5

MR-4.1 0 16.66 5 31.2 5

MR-4.2 0 16.66 5 31.2 5

MR-5.1 0 16.66 5 31.2 5

MR-5.2 0 16.66 5 31.2 5

Table 5: Branch Coverage for Iris

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

Kill rate or the mutant kill rate is the measure of the effectiveness

of the test suite. It is basically a testing technique to evaluate test

suite. It is a metric that represents the ability of a test suite to

uncover faults or mutants. Mutants are generally artificial faults

fed into the system by making small changes in the code that do

not result in syntax errors but introduce faults into the system.

BRANCH COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC

RELATIONS WITH TITANIC
 SVM KNN ANN NB ID3

No MR 0 16.66 5.2 31.25 6.25

MR-0 0 16.66 5.2 31.25 6.25

MR-1.1 0 16.66 5.2 31.25 6.25

MR-1.2 0 16.66 5.2 31.25 6.25

MR-2.1 0 16.66 5.2 31.25 6.25

MR-2.2 0 16.66 5.2 31.25 6.25

MR-3.1 0 16.66 5.2 31.25 6.25

MR-3.2 0 16.66 5.2 31.25 6.25

MR-4.1 0 16.66 5.2 31.25 6.25

MR-4.2 0 16.66 5.2 31.25 6.25

MR-5.1 0 16.66 5.2 31.25 6.25

MR-5.2 0 16.66 5.2 31.25 6.25

Table 6: Branch Coverage for Titanic

The better a test suite is the higher its kill rate will be. The tables

below show the kill rate for Xie’s MRs for the the five classifiers

used in the study. The mutants are added in such a way that they

are evenly distributed throughout the code. Although it is not

possible to add mutants to the parts of the code that use built in

function calls and do not have many mutant operators that can be

modified. This is what happened with SVM and KNN. The green

parts of the tables represent the mutants that are killed by the

MRs and the red part represents the mutants that are in the part of

the code that is not covered by either statement or branch

coverage.

Kill rate for the metamorphic relations for ANN with the

Titanic Dataset

Total lines of Code: 1518

Sr

no
Mutant

MR-

0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 += to -=
2 != to ==
3 [i+1] to [i-1]
4 += to -=
5 != to ==
6 /= to *=
7 == to !=
8 -1 to +1
9 305: += to -=
10 307:* to /
11 317:- to +
12 348: Delete not
13 353:== to !=
14 362: -1 to +1
15 384: 2 to 3
16 387:/ to *
17 414: removed not
18 416: REMOVED

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

NOT

19 424: == to !=
20 427: -1 TO 1
21 445: -to +
22 450:

layer_units[1:] to

layer_units[1:10]

23 455: [1:]

to[1:10]

24 566: True to

False

25 566: >= to <=
26 570: -1 to +1
27 590: + to -
28 597: == to !=
29 607:and to or
30 619:0 to 1
31 624: min to max
32 628: <1 TO >1
33 628: or to and
34 636: not added
35 644: 0.0 TO 1.0
36 647: not added
37 655: 0 to 1
38 662: += TO -=
39 662: - TO +
40 662: * to /
41 667: + to -
42 671: += TO -=
43 673 * TO /
44 675 += TO -=
45 691: not added
46 704: not added

47
706 break to

continue

48 713: == TO !=
49 739: > TO <
50 741: += TO -=
51 742: += to -+
52 752: [-1] to [1]
53 755: += to -=
54 760: [-1] to [1]
55 1056: max_iter =

200 to max_iter=

-200

56 1082:== TO !=
57 1107: removed

not

58 1107: or to and
59 1109 removed

not

60
1109 removed

second not

61 1122 != to ==
62 1158 == TO !=
63 1189: Removed

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

not

64 1243: == TO !=
65 1248 – TO +
66 1533: == TO !=
67 1544: == TO !=
 4% 3% 3% 6% 25% 7% 1% 6% 6% 0% 3%

14/67 = 20.8%

Table 7: Mutation Coverage for ANN with Titanic

As per the detailed coverage report for ANN when it is trained

with titanic and then tested with the metamorphic relations MR-0

to MR5.2, 43% of the statements are covered. The kill rate for

the metamorphic relations with 67 mutants is 6% where the

highest kill rate is 25% by MR-2.2 and the lowest is 0% by MR-

5.1. The mutants are generated in such a way that they are evenly

distributed throughout the algorithms and every mutant is

individually tested multiple times to ensure that the kill is due to

the MRs and not due to the misclassification by the model. 38

out of 67 mutants were in the part of the code that is never

covered by either statement coverage or branch coverage.

Therefore the mutants that are executed are 29 and out of these

29 mutants the mutants that are killed is equal to 14. That brings

the kill rate to 48% which is significantly higher that the initial

6%.

Kill rate for the metamorphic relations for ANN with the

Iris Dataset

Sr

no
Mutant

MR-

0
MR-

1.1
MR-

1.2
MR-

2.1
MR-

2.2
MR-

3.1
MR-

3.2
MR-

4.1
MR-

4.2
MR-

5.1
MR-

5.2

1 += to -=

2 != to ==

3 [i+1] to [i-1]

4 += to -=

5 != to ==

6 /= to *=

7 == to !=

8 -1 to +1 - - - - - - - - - - -

9 305: += to -=

10 307:* to /

11 317:- to +

12 348: Delete not

13 353:== to !=

14 362: -1 to +1 - - - - - - - - - - -

15 384: 2 to 3

16 387:/ to *

17 413: removed not

18 416: removed not

19 424: == to !=

20 427: -1 TO 1

21 445: -to +

22 450:

layer_units[1:] to

layer_units[1:10]

23 455: [1:]

to[1:10]

24 566: True to False

25 566: >= to <=

26 570: -1 to +1

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

27 590: + to -

28 597: == to !=

29 607:and to or

30 619:0 to 1

31 624: min to max

32 628: <1 TO >1

33 628: or to and

34 636: not added

35 644: 0.0 TO 1.0

36 647: not added

37 655: 0 to 1

38 662: += TO -=

39 662: - TO +

40 662: * to /

41 667: + to -

42 671: += TO -=

43 673 * TO /

44 675 += TO -=

45 692: not added

46 704: not added

47
706 break to

continue

48 713: == TO !=

49 739: > TO <

50 741: += TO -=

51 742: += to -=

52 752: [-1] to [1]

53 755: += to -=

54 760: [-1] to [1]

55 1056: max_iter =

200 to max_iter=

-200

56 1082: == TO!=

57 1107: removed

not

58 1107: or to and

59 1109 removed not

60 1109 removed

second not

61 1122 != to ==

62 1158 == TO !=

63 1189: Removed

not

64 1243: == TO !=

65 1248 – TO +

66 1533: == TO !=

67 1544: == TO !=

 18% 15% 12% 16% 13% 13% 15% 16% 21% 12% 16%

13/67 = 19.4%

Table 8: Mutation Coverage for ANN with Iris

ANN was trained with titanic to see if the results are any

different. The same mutants were added at the same points again

to see if the results are same with a different dataset. 36 mutants

in this case were in the uncovered part of the algorithm, which

makes the mutants that were covered and killed 41.9%. its

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

interesting to not that some of the mutants that were in the uncovered part with iris were in the covered part with titanic.

Kill rate for the metamorphic relations for ID3 with the
Iris Dataset

No of lines of Code: 1833

Sr
no

Mutant MR-0
MR-
1.1

MR-
1.2

MR-
2.1

MR-
2.2

MR-
3.1

MR-
3.2

MR-
4.1

MR
-

4.2

MR-
5.1

MR-
5.2

1 132: 0.0 to 1.0
2 161: added not
3 172: added not
4 180 < to >
5 188: += to -+
6 203: or to and
7 203: != to ==
8 208: < to >
9 204: <= to >=

10 237: y to y+1

11
242: removed
not

12 259: != to ==
13 277: > to <
14 277: <= to >=
15 283: * to /
16 287: >= to <=
17 294: < to >
18 301:max to min
19 304: max to min
20 206: * to /
21 312: max to min
22 316: == to !=
23 318: max to min
24 321: max to min
25 332:> to <
26 345: <=to >=
27 360: <2 to >2

28
365: removed
not

29
369: removed
not

30
372: removed
not

31 382: * to /
32 386:* to /
33 400: < to >
34 408: < to >
35 415: != to ==

36
427: removed
not

37 461: 1 to 0
38 462: * to /

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

39 487: and to or

40
502: False to
True

41 507: or to and
42 508: != to ==

43
515: False to
True

44 545 x to X+1
45 550: added not
46 571: == to !=
47 636:> to <
48 641 == to !=
49 654 * to /

50
980: True to
False

51 1055: == to !=
52 1057: /= to *=
53 1069: == to !=
54 1071: /= to *=
55 1096: == to !=
56 1849: 2 to 3

20% 4% 4% 4% 4% 4% 4% 4%
13
%

4% 4%

9/56 = 16.07%

Table 9: Mutation Coverage for ID3 with Iris

Iris is one of the most popular datasets for classification, because

of its high accuracy and the quality of being balanced. Very little

pre- processing is needed to work with Iris. ID3 was trained with

Iris and overall kill rate for ID3 with Iris was 14%, since 8 out of

56 mutants were killed by test suite on the whole. The statement

and branch coverage with this dataset and ID3 are 46.7% and

5%. The code for ID3 is different from the others in the fact that

it has a large number of nested conditional statements. The

covered and uncovered parts are highly segregated because of the

multiple conditions and the parts within them that remain

uncovered.

Kill rate for the metamorphic relations for ID3 with the

Titanic Dataset

No of lines of Code: 1833
Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 132: 0.0 to 1.0
2 161: added not
3 172: added not
4 180 < to >
5 188: += to -=
6 203: or to and
7 203: != to ==
8 208: < to >
9 214: <= to >=

10 237: y to y+1
11 242: removed not
12 259: != to ==
13 277: > to <
14 277: <= to >=
15 283: * to /

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

16 287: >= to <=
17 294: < to >
18 301:max to min
19 304: max to min
20 206: * to /
21 312: max to min
22 316: == to !=
23 318: max to min
24 321: max to min
25 332:> to <
26 345: <=to >=
27 360: <2 to >2
28 365: removed not
29 369: removed not
30 372: removed not
31 382: * to /
32 386:* to /
33 400: < to >
34 408: < to >
35 415: != to ==
36 427: removed not
37 461: 1 to 0
38 462: * to /
39 487: and to or
40 502: False to True
41 507: or to and
42 508: != to ==
43 515: False to True
44 545 x to X+1
45 550: added not
46 571: == to !=
47 636:> to <
48 641 == to !=
49 654 * to /
50 980: True to False
51 1055: == to !=
52 1057: /= to *=
53 1069: == to !=
54 1071: /= to *=
55 1096: == to !=
56 1849: 2 to 3

 14% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

6/56 = 10.71%
Table 10: Mutation Coverage for ID3 with Titanic

To verify that the kill rate and coverage value are due to the MRs

and are not affected by the choice of the algorithm or the dataset

being used, ID3 was trained with Titanic and 5 out of 56 mutants

were killed. 23 were not covered and 28 survived despites being

covered. This makes the kill rate for the mutants that were in the

covered part 16%. As it is apparent from the above table the

covered parts here as well are segregated.

Kill rate for the metamorphic relations for SVM with the

Titanic Dataset

No of lines of Code: 1496

Sr Mutant MR- MR- MR- MR- MR- MR- MR- MR- MR- MR- MR-

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

no 0 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2

1
211: Verbose =

0 to verbose=1

2 250: < to >

3
158: False to

True

4 269: and to or
5 270: == to !=
6 217: -1 to 1
7 275: 0 to 1
8 450: < to >

9
457: False to

True

10
687: 1e -3 to

1e+3

11 909: -1 to 1
12 1077: -1 to 1
13 1247: -1 to 1

14
1386: False to

True

15 1451: + to -
 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%

1/15= 6.66%

Table 11: Mutation Coverage for SVM with Titanic

The number of mutants in SVM are a lot less than the other

algorithms, although the lines of code is big. This reason for this

is that the code contained very few mutant operators that could

be modified, which limits the number of mutants that can be

added to the code. Another reason is that the code was largely

composed of function calls and other language specific

constraints which cannot be easily mutated. 10 out of 15 mutants

are in the area that was not covered, resulting in 1 mutant being

killed and 4 mutants were covered and they survived. The kill

rate for the covered mutants is 20%.

Kill rate for the metamorphic relations for SVM with the

Iris Dataset

No of lines of Code: 1496
Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1
211: Verbose = 0 to

verbose=1

2 250: < to >
3 158: False to True
4 269: and to or
5 270: == to !=
6 217: -1 to 1
7 275: 0 to 1
8 450: < to >
9 457: False to True
10 687: 1e -3 to 1e+3
11 909: -1 to 1
12 1077: -1 to 1
13 1247: -1 to 1
14 1386: False to True
15 1451: + to -
 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6%

1/15 = 6.66%
Table 12: Mutation Coverage for SVM with Iris

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

The code for KNN has 382 lines which is relatively less than the

other algorithms and there is a lack of mutants in the code as well

so there are only 11 mutants for it. Only three mutants out of

these 11 were covered and no mutants were killed for either Iris

or Titanic.

Kill rate for the metamorphic relations for KNN with the

Iris Dataset

No of lines of Code: 382

Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 185: 5 to -5
2 239: X to X+1
3 258: X to X+1
4 284: removed not

5
318: Removed

not

6 322: -1 to 1

7
neigh_ind to

neigh_ind +1

8 358: : to :10
9 366 == to !=

10 370: /= to *=
11 357: 0 to 1
 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0/11 = 0%
Table 13: Mutation Coverage for KNN with Iris

Kill rate for the metamorphic relations for KNN with the

Titanic Dataset

No of lines of Code: 382
Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 185: 5 to -5
2 239: X t0 X+1
3 258: X to X+1
4 284: removed not

5
318: Removed

not

6 322: -1 to 1

7
neigh_ind to

neigh_ind +1

8 358: : to :10
9 366 == to !=
10 370: /= to *=
11 357: 0 to 1
 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0/11 = 0%
Table 14: Mutation Coverage for KNN with Titanic

Kill rate for the metamorphic relations for Naïve Bayes with the

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

Iris Dataset

No of lines of Code: 522
Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 147: X to X+1
2 152: - to +
3 235: 1e-9 to 1e+9
4 264: True to False
5 266: True to False
6 313: == to !=
7 323: 2 to 3
8 328: 0 to 1
9 333: == to !=

10 338: + to -

11
345: n_new * to

n_new /

12 345: n_new + to -
13 346: / to *
14 353: * to /
15 355: * to /
16 357: + to -
17 359:* to /
18 406: False to True
19 438: Removed not
20 449: * to /
21 461: 0 to 1
22 475: != to ==
23 481: Removed not
24 486: < to >
25 496 != to ==
26 502 : to :10
27 518: == to !=
28 522: == to !=
29 527: 0 to 1
30 531: : to :10
31 534: : to :10
32 537: += to -=
33 540: += to -=
34 547: / to *
35 557: - to +
36 560:* to /
37 560: - to +
38 563: + to -
 16% 16% 3% 16% 16% 16% 5% 16% 21% 16% 5%

8/38 = 21.05%
Table 15: Mutation Coverage for Naïve Bayes with Iris

8 mutants were killed out of 38 mutants that were added to Naïve

Bayes. 16 mutants were in the uncovered parts of the code. Naïve

Bayes had a code coverage of 46.4 and 31.5 % for statement and

branch coverage and the overall kill rate for the MRs was 21%

for Iris and 7.8% for Titanic.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

Kill rate for the metamorphic relations for Naïve Bayes with the

Titanic Dataset

No of lines of Code: 522
Sr

no
Mutant MR-0

MR-

1.1

MR-

1.2

MR-

2.1

MR-

2.2

MR-

3.1

MR-

3.2

MR-

4.1

MR-

4.2

MR-

5.1

MR-

5.2

1 147: X to X+1
2 152: - to +
3 235: 1e-9 to 1e+9 x x x
4 264: True to False
5 266: True to False
6 313: == to != x x x
7 323: 2 to 3
8 328: 0 to 1
9 340: == to !=

10 344: + to -

11
352: n_new * to

n_new /

12 352: n_new + to -
13 352: / to *
14 359: * to /
15 361: * to /
16 363: + to -
17 365:* to /
18 412: False to True
19 443: Removed not - - - - - - - - - - -
20 454: * to /
21 461: 0 to 1 - - - - - - - - - - -
22 478: != to ==
23 485: Removed not
24 489: < to >
25 500 != to ==
26 506 : to :10
27 521: == to != x
28 526: == to !=
29 531: 0 to 1
30 535: : to :10
31 538: : to :10
32 541: += to -=
33 544: += to -=
34 550: / to *
35 559: - to +
36 563:* to /
37 563: - to +
38 563: + to -
 8% 8% 8% 8% 8% 8% 8% 13% 8% 5% 8%

3/38 = 7.89%
Table 16: Mutation Coverage for Naïve Bayes with Titanic

IV. ANALYSIS & FINDINGS

It is clear from the above discussion that more than 50% when

testing with Xie’s MR’s don’t get detected at all because they lie

in the part of the code that is never exercised either by statement

or branch coverage. Although the kill rate of the given MRs is

independent the code covered, because the kill rate is affected by

a complex set of factors like the quality of the test cases, the type

and the diversity of the mutants used and the effectiveness of the

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

test cases. The fact still holds that if the mutants that are in the

uncovered part of the code could get executed, it is possible that

some of the mutants might get killed and increase the overall kill

rate of the test Suite.

 We found a strong correlation between the number of mutants

that were not killed and the number of mutants that were not

covered. To see if this correlation held statistically, the data form

the kill rate and the coverage was used to find the Pearson’s

Correlation and the P-Value for the number of uncovered

mutants and the number of mutants that were not killed. The

Pearson’s Correlation coefficient came out to:

0.956453459441019 and the P-Value is 1.4925035439266146e-

05. This value shows a strong correlation between the two

categories and the P-value shows statistically that the likelihood

of the correlations to have occurred by chance is very low. The

graphs below show the visual representation of the findings

Which means that if the number of uncovered mutants is

reduced, it may result in the reduction of the number of mutants

that have survived.

V. CONCLUSION

This study quantifies the effectiveness of detecting faults of

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

Xie’s metamorphic relations (MRs) by finding the kill rate for

the MRs after applying them to the classifiers from Sci-kit learn

library from Python. Along with this, statement and branch

coverage were measured before and after applying the MRs. It

was observed that there is a negligible impact of MRs on the

coverage of the code, which implies that there exists unchecked

code when testing with MRs. Another finding is the existence of

a robust positive correlation between the uncovered mutants and

the ones that survived. This observation suggests that the MRs

may exhibit limitations in effectively identifying a broad

spectrum of faults. Consequently, future research should focus on

incorporating coverage as a metric to enhance the efficacy of

testing ML algorithms.

VI. FUTURE WORK

Future work can build upon the insights provided by this work

by taking into consideration coverage as one of the metrics for

testing Machine Learning classifiers, to address the limitations

inherent in the MRs. This makes it necessary to develop

innovative techniques and methodologies that can ensure the

coverage of the code along with Metamorphic testing.

Automated generation of MRs that target uncovered parts of the

code can be instrumental in this regard. Further investigation into

the impact of coverage-based testing on the overall effectiveness

of the MRs is also needed to better understand intricacies of

using coverage as a metric for metamorphic testing in different

domains and areas. Furthermore ,work to rectify the coverage

limitation of MR might result in optimizing the MRs and make

them more effective.

REFERENCES

[1] Bai, T., et al. Metamorphic Testing for Traffic Light Recognition in
Autonomous Driving Systems. in 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion (QRS-C). 2021.
IEEE.

[2] Deng, Y., et al. BMT: Behavior driven development-based metamorphic
testing for autonomous driving models. in 2021 IEEE/ACM 6th
International Workshop on Metamorphic Testing (MET). 2021. IEEE.

[3] Deng, Y., et al., A Declarative Metamorphic Testing Framework for
Autonomous Driving. 2022.

[4] Han, J.C. and Z.Q. Zhou. Metamorphic fuzz testing of autonomous vehicles.
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops. 2020.

[5] Pan, Y., H. Ao, and Y. Fan. Metamorphic Testing for Autonomous Driving
Systems in Fog based on Quantitative Measurement. in 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
Companion (QRS-C). 2021. IEEE.

[6] Valle, P. Metamorphic testing of autonomous vehicles: A case study on
Simulink. in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 2021. IEEE.

[7] Ayerdi, J., et al., Performance-driven metamorphic testing of cyber-physical
systems. 2022.

[8] Iqbal, M., et al., Metamorphic testing of Advanced Driver-Assistance
System (ADAS) simulation platforms: Lane Keeping Assist System (LKAS)
case studies. 2023. 155: p. 107104.

[9] Asyrofi, M.H., et al. Crossasr: Efficient differential testing of automatic
speech recognition via text-to-speech. in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2020. IEEE.

[10] Yoo, S. Metamorphic testing of stochastic optimisation. in 2010 Third
International Conference on Software Testing, Verification, and Validation
Workshops. 2010. IEEE.

[11] Panichella, A., F.M. Kifetew, and P.J.I.T.o.S.E. Tonella, Automated test
case generation as a many-objective optimisation problem with dynamic
selection of the targets. 2017. 44(2): p. 122-158.

[12] Guderlei, R. and J. Mayer. Statistical metamorphic testing testing programs
with random output by means of statistical hypothesis tests and
metamorphic testing. in Seventh International Conference on Quality
Software (QSIC 2007). 2007. IEEE.

[13] Xie, X., et al., Testing and validating machine learning classifiers by
metamorphic testing. 2011. 84(4): p. 544-558.

[14] Canizares, P.C., A. Núñez, and J.J.E.S.w.A. de Lara, An expert system for
checking the correctness of memory systems using simulation and
metamorphic testing. 2019. 132: p. 44-62.

[15] Khokhar, M.N., et al., Metamorphic Testing of AI-based Applications: A
Critical Review. 2020. 11(4).

[16] Asyrofi, M.H., et al., Biasfinder: Metamorphic test generation to uncover
bias for sentiment analysis systems. 2021. 48(12): p. 5087-5101.

[17] Jin, L., Z. Ding, and H.J.M. Zhou, Evaluation of Chinese Natural Language
Processing System Based on Metamorphic Testing. 2022. 10(8): p. 1276.

[18] Jiang, M., et al., On the effectiveness of testing sentiment analysis systems
with metamorphic testing. 2022. 150: p. 106966.

[19] Manino, E., et al., Systematicity, Compositionality and Transitivity of Deep
NLP Models: a Metamorphic Testing Perspective. 2022.

[20] Fan, M., et al. One step further: evaluating interpreters using metamorphic
testing. in Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. 2022.

[21] Tu, K., M. Jiang, and Z.J.M. Ding, A metamorphic testing approach for
assessing question answering systems. 2021. 9(7): p. 726.

[22] Sun, Z., et al. Automatic testing and improvement of machine translation. in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. 2020.

[23] He, P., C. Meister, and Z. Su. Testing machine translation via referential
transparency. in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 2021. IEEE.

[24] Liu, Z., Y. Feng, and Z. Chen. DialTest: Automated testing for recurrent-
neural-network-driven dialogue systems. in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
2021.

[25] Cao, J., et al., SemMT: a semantic-based testing approach for machine
translation systems. 2022. 31(2): p. 1-36.

[26] Hilmi Asyrofi, M., et al., BiasFinder: Metamorphic Test Generation to
Uncover Bias for Sentiment Analysis Systems. 2021: p. arXiv: 2102.01859.

[27] Ma, P., S. Wang, and J. Liu. Metamorphic Testing and Certified Mitigation
of Fairness Violations in NLP Models. in IJCAI. 2020.

[28] Khoo, L.S., et al. Exploring and repairing gender fairness violations in
word embedding-based sentiment analysis model through adversarial
patches. in 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). 2023. IEEE.

[29] Yuan, Y., et al. Perception matters: Detecting perception failures of vqa
models using metamorphic testing. in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021.

[30] Yang, Z., M.H. Asyrofi, and D. Lo. BiasRV: Uncovering biased sentiment
predictions at runtime. in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2021.

[31] Yang, Z., et al. BiasHeal: On-the-fly black-box healing of bias in sentiment
analysis systems. in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2021. IEEE.

[32] Zhang, L., Y. Zhang, and M. Zhang. Efficient white-box fairness testing
through gradient search. in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2021.

[33] Perera, A., et al., Search-based fairness testing for regression-based
machine learning systems. 2022. 27(3): p. 79.

[34] Chen, Z., et al. MAAT: a novel ensemble approach to addressing fairness
and performance bugs for machine learning software. in Proceedings of the

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 07 JULY 2023 299-318

30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2022.

[35] Carvalho, D.S., et al., Montague semantics and modifier consistency
measurement in neural language models. 2022.

[36] Murphy, C., G.E. Kaiser, and L. Hu, Properties of machine learning
applications for use in metamorphic testing. 2008.

[37] Chekam, T.T., et al. An empirical study on mutation, statement and branch
coverage fault revelation that avoids the unreliable clean program
assumption. in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 2017. IEEE.

[38] Luu, Q.-H., et al., Testing multiple linear regression systems with
metamorphic testing. 2021. 182: p. 111062.

[39] Peng, Z., U. Kanewala, and N. Niu. Contextual understanding and
improvement of metamorphic testing in scientific software development. in
Proceedings of the 15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 2021.

[40] Baxter, I.J.I.A.T.I.S.h.t.c.s.d.f.a.X.f.p., Branch Coverage For Arbitrary
Languages Made Easy: Transformation Systems to the Rescue. 2001.

[41] Santelices, R., et al. Lightweight fault-localization using multiple coverage
types. in 2009 IEEE 31st International Conference on Software
Engineering. 2009. IEEE.

[42] Abraham, A., et al., Machine learning for neuroimaging with scikit-learn.
2014: p. 14.

[43] Hackeling, G., Mastering Machine Learning with scikit-learn. 2017: Packt
Publishing Ltd.

[44] Hao, J., T.K.J.J.o.E. Ho, and B. Statistics, Machine learning made easy: a
review of scikit-learn package in python programming language. 2019.
44(3): p. 348-361.

[45] Kramer, O. and O.J.M.l.f.e.s. Kramer, Scikit-learn. 2016: p. 45-53.

[46] Zhang, R.F. and R.J. Urbanowicz. A scikit-learn compatible learning
classifier system. in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion. 2020.

[47] Xie, X., et al. Application of metamorphic testing to supervised classifiers.
in 2009 Ninth International Conference on Quality Software. 2009. IEEE.

[48] Dwarakanath, A., et al. Identifying implementation bugs in machine
learning based image classifiers using metamorphic testing. in Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2018.

[49] Segura, S., et al., A survey on metamorphic testing. 2016. 42(9): p. 805-824.

[50] Segura, S., et al. Performance metamorphic testing: Motivation and
challenges. in 2017 IEEE/ACM 39th International Conference on Software

Engineering: New Ideas and Emerging Technologies Results Track (ICSE-
NIER). 2017. IEEE.

[51] Gupta, N., A.P. Mathur, and M.L. Soffa. Generating test data for branch
coverage. in Proceedings ASE 2000. Fifteenth IEEE International
Conference on Automated Software Engineering. 2000. IEEE.

[52] Sharma, S., U. Chandra, and P.J.I.J.o.C.I.R. Jain, A literature survey on
automation of test data generation for branch coverage testing using genetic
algorithm. 2017. 13(6): p. 1521-1531.

[53] Lakhotia, K., et al., An empirical investigation into branch coverage for C
programs using CUTE and AUSTIN. 2010. 83(12): p. 2379-2391.

[54] Bahaweres, R.B., et al. Analysis of statement branch and loop coverage in
software testing with genetic algorithm. in 2017 4th International
Conference on Electrical Engineering, Computer Science and Informatics
(EECSI). 2017. IEEE.

[55] Hajjar, A., T. Chen, and A. von Mayrhauser. On statistical behavior of
branch coverage in testing behavioral vhdl models. in Proceedings IEEE
International High-Level Design Validation and Test Workshop (Cat. No.
PR00786). 2000. IEEE.

[56] Malaiya, Y.K., et al. The relationship between test coverage and reliability.
in Proceedings of 1994 IEEE International Symposium on Software
Reliability Engineering. 1994. IEEE.

AUTHORS

First Author – Sadia Ashraf, Masters in Software Engineering,

International Islamic University Islamabad (IIUI) –

Second Author – Dr. Aamir Nadeem, Ph.D. Software

Engineering, Capital University of Science and Technology

(CUST).

Third Author – Dr. Salma Imtiaz, Ph.D. Software Engineering,

International Islamic University Islamabad (IIUI) –

Correspondence Author – Sadia Ashraf, Masters in Software

Engineering, International Islamic University Islamabad (IIUI) –

