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Abstract- Machine learning (ML) is one of the most popular area 

in the field of AI, which has led to a rapid rise in ML 

applications. Most of these applications use libraries like Sci-kit 

learn and Weka which implement these algorithms. Testing these 

ML applications is difficult because they suffer from the oracle 

problem and traditional testing techniques generally do not work 

without oracles. Metamorphic testing is used instead of the 

traditional testing techniques for these applications. Although the 

code for the actual application is usually too simple to be need 

formal testing but the implementation of the algorithms within 

the libraries is not. This work evaluates the existing metamorphic 

relations in the literature for their effectives in detecting faults 

and finds the kill rate of these metamorphic relations when they 

are used to test the implementations for 5 classifiers (ANN, ID3, 

KNN, Naïve Bayes, SVM) from Sci-kit learn. It also finds the 

statement and branch coverage when using these Metamorphic 

relations and finds an indirect relationship between coverage and 

kill rate which can be exploited to improve the kill rate for the 

test suites. 

 

Index Terms- Metamorphic Testing, Metamorphic Relations, 

Oracle, Machine Learning. 

 

I. INTRODUCTION 

etamorphic Testing (MR) is a technique used for software 

which cannot be tested with conventional testing methods. 

It tests software based on its expected behavior as opposed to 

expected outputs, which makes it a popular choice for complex 

systems that do not have a fixed output for a given input and are 

characterized by randomness. MRs are used to test Autonomous 

Vehicles [1-9], where the possible noise in the environment is 

simulated and fed to the systems to test it for the issues it might 

face on the road. It is popular in testing stochastic software [10-

15], that does not have oracles to guide the testing process. NLP 

based systems [9, 16-28] are tested with metamorphic tests due 

to the semantic nature of these systems. A fairly new area where 

metamorphic testing is being used is fairness testing [28-35], 

where the systems are tested for bias and discrimination. Most of 

these systems suffer from the oracle problem. The oracle 

problem makes it difficult to test the systems because the correct 

outputs are not known in advance to be able to compare the 

outcomes of the test cases with these outcomes. Testing without 

oracles might result in insufficient testing since the traditional 

coverage-based techniques are replaced by metamorphic 

relations.[36, 37] 

 

    Metamorphic Relations are used in the absence of oracles 

where normal testing techniques like Blackbox and White box 

testing cannot be applied. Metamorphic Testing is used to derive 

expected outputs, when the input and the expected behavior is 

known. The need for oracles is eliminated, when MRs are used to 

test the system. The accuracy of the system is determined by its 

conformance to the MR and if the system deviates from the 

expected behavior then it indicates a fault in the system. 

Metamorphic Testing is useful for regression testing [38, 39], 

where the system is tested for changes in the output after the 

updates are made in it. Machine Learning Systems are generally 

tested with MRs, since these systems do not have oracles to 

guide the testing process. 

   

    Machine Learning systems like classifiers are used to make 

predictions based on the patterns learned from the given data. 

The expected output for them is no available and therefore these 

systems are tested with MRs’. The popular MRs’ for classifiers 

are the MRs by Xie that are based on the necessary properties of 

ML Classifiers.  Xie’s [13] MRs are divided into six categories, 

each representing a property of the ML Classifiers. Data 

Transformation, applies affine transformation on the data. Data 

Permutation, applies permutations to the classes, Attribute 

Addition, adds uninformative attributes to the dataset. Data and 

Prediction augmentation repeats the rows in such a way as to 

not affect prediction. Class Addition and Modification 

duplicates data in such a way that the accuracy is not affected. 

Class Removal deletes records, etc so the accuracy remains 

unaffected.  

 

    These MRs work by creating a model by training the algorithm 

with the original dataset. The follow-up dataset is created by 

modifying it according to the MRs and the follow-up model is 

created with the modified dataset. Both the models should work 

exactly in the same way because the modifications introduced by 

Xie’s MRs[13] do not affect the correlations between the 

attributes. Therefor any variation in the predictions made by the 

two models is due to the faults in the system. The faults are 

located when the follow-up and original models vary in accuracy.  

M 
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    The performance of the Test Suite in detecting faults is known 

as the fault detection effectiveness. The higher the effectiveness 

of a Test Suite the better it is at detecting faults. Fault detection 

effectiveness is measured in literature [37, 40, 41] using mutation 

testing. Mutation testing adds artificial faults called mutants to 

the code and then runs the test suite on it to see if the fault is 

detected. The number of mutants that the Test Suite detects, 

determines the kill rate of the test suite.  

   

     This work evaluates the effectiveness of Xie’s MRs by 

applying mutation testing on the MRs. It also measures 

Statement and Branch coverage of the code when the MRs are 

run. The code used for this work is the implementation of the sci-

kit learn’s classifiers. Five most commonly used classifiers [42-

46] that are used for this study are Naïve Bayes, ID3 (Iterative 

Dichotomiser), SVM (Support Vector Machine), KNN (K- 

Nearest Neighbor) & ANN (Artificial Neural Network).   

 

     Xie’s MRs consists of 11 MRs which cover different aspects 

of the machine learning algorithms. We evaluated all 11 MRs 

with 5 different algorithms and two different datasets. This work 

reports the kill rate for the MRs and the possible cause for the 

kill rate being low from a white box coverage point of view. The 

motivation for this work is to find the correlation between the kill 

rate and the uncovered mutants. The findings from this work can 

be used explore the direction of coverage for machine learning 

algorithms. Future work to improve the effectiveness of the MRs 

can be done based on the findings in this work. 

 

     The observations made in our work are that most mutants are 

never executed because they are in the uncovered part of the 

code. The MR does not exercise almost 50% of the code for the 

algorithm. The kill rate for the MRs ranges from 0% to 21% 

depending on the number of mutants that are covered and the 

number of mutants that are added to the code.  

 

     Generally, the code coverage does not have a direct 

correlation with the mutant kill rate [37]. The kill rate depends on 

multiple factors like the type and diversity of the mutants used 

along with the quality of the test suite. But the number of 

mutants being killed is directly dependent on the no of mutants 

that are exercised. If the mutants are never exercised then they do 

not contribute to the kill rate of the Test Suite. Any MRs that can 

improve the coverage might result in a test suite with a higher 

kill rate and is more effective in detecting faults in general. 

 

   The rest of this paper contains the background where existing 

work related to this study is discussed. After that the actual study 

is discussed along with the observations made in the accuracy, 

kill rate and coverage section. The conclusion and future work 

sections discuss the possible issues with this work and the 

direction the future work can take.  

article guides a stepwise walkthrough by Experts for writing a 

successful journal or a research paper starting from inception of 

ideas till their publications. Research papers. 

 

 are highly recognized in scholar fraternity and form a core part 

of PhD curriculum. Research scholars publish their research 

work in leading journals to complete their grades. In addition, the 

published research work also provides a big weight-age to get 

admissions in reputed varsity. Now, here we enlist the proven 

steps to publish the research paper in a journal.  

 

II. BACKGROUND 

   This section explains basics of Machine learning, Metamorphic 

testing along with the formal definitions for the techniques being 

used in this work. Related work in the area is also discussed. 

Definitions: 

Metamorphic Testing 

In a system where f  is the target algorithm or function. The 

metamorphic relation (MR) can be described as a property of f 

over a sequence of two or more inputs, denoted as (a₁, a₂, ..., ai ), 

for i > =2, with the corresponding outputs for the sequence of 

inputs are (f(a₁), f(a₂), ..., f(ai )). 

 

Metamorphic relations are a relation R ⊆ X₁ × X₂ × ... × Xi × Y₁ 

× Y₂ × ... × Yi, where ⊆ consists of a subset of relations. X₁ × X₂ 

× ... × Xi and Y₁ × Y₂ × ... × Yi is the Cartesian product of the 

input domain and the output domain. Therefore, we can say R(a₁, 

a₂, ..., ai , f(a₁), f(a₂), ..., f(ai )) to indicate that the tuple (a₁, a₂, ..., 

ai , f(a₁), f(a₂), ..., f(ai )) belongs to R. 

 

Machine Learning Classifiers 

Formally, a classifier is a mapping of a function C: X → Y, 

where X is a set of the input domain or feature space, and Y is the 

output space, which contains the class labels that the model can 

assign to the given input. For a given input vector x ∈ X, the 

classifier assigns a class label y ∈ Y to that instance, hence 

making a prediction based on the data it was trained on. The 

formal definitions for the 5 classifiers used in this work are given 

below: 

 

KNN (k-Nearest Neighbors): 

If X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)} is a training dataset where xi is 

the vector of feature and yi is the output label for that feature. 

Where xi ϵ ℝⁿ and yi ϵ Y, which is a set of all the possible class 

labels. Given a distance metric d(x, x'), where d: ℝⁿ × ℝⁿ → ℝ 

represents the distance between two feature vectors, the KNN 

algorithm calculates the distances between the new instance x* 

and all training instances: D = {(d(x*, x₁), y₁), (d(x*, x₂), y₂), ..., 

(d(x*, xₙ), yₙ)}, where D is the set of Euclidean distances sorted in 

ascending order and the Euclidean distance between vectors x 

and x' is 

 

d(x, x') = √(∑(xᵢ - x'ᵢ)²) 

 

 

ID3 (Iterative Dichotomiser 3): 

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈ 

ℝⁿ consists of the features or attributes of X and yᵢ ∈ Y is a set of 

all possible class label for X. ID3 recursively partitions the 

feature space based on information gain, which in turn depends 
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on the entropy of the chaos in the given data. The Entropy of a 

target variable is given below: 

Y: H(Y) = -∑(p(y) * log₂(p(y))) 

 

The Information gain for a feature X, given the target Y is given 

by the formula below: 

 IG(X, Y) = H(Y) - ∑((|Xᵥ| / |X|) * H(Y|Xᵥ))  

where |Xᵥ| is the number of instances in X with value v. 

 

 

ANN (Artificial Neural Networks): 

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈ 

ℝⁿ is a set or real number that represent the feature vector for X 

and yᵢ ∈ Y is the corresponding target class label. Given an input 

vector x, the forward propagation in ANN follows the steps 

below: 

The input layer is initialized with the value of x. Each layer in the 

hidden layers and the output layer’s activation formula is 

computed using the formulae below: 

For each hidden layer neuron j:  

zⱼ = ∑(wⱼᵢ * aᵢ) + bⱼ aⱼ = σ(zⱼ) 

 

For each output layer neuron k:  

zₖ = ∑(wₖⱼ * aⱼ) + bₖ aₖ = σ(zₖ) 

where wⱼᵢ and wₖⱼ are the weights, bⱼ and bₖ are the biases, aᵢ and 

aⱼ are the activations of the input and hidden layer neurons, 

respectively, and σ(⋅) is the activation function. 

 

 

SVM (Support Vector Machine): 

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, where xᵢ ∈ 

ℝⁿ is a vector made of real numbers that make up the features of 

the dataset and yᵢ ∈ Y is the set of target class label. SVM finds 

an optimal hyperplane in the feature space in order to separate 

the data points from various different classes with a maximum 

margin. For X, the SVM is defined as follows: 

For xᵢ, the feature vector is mapped into a higher-dimensional 

feature space with the following kernel function, where ℋ is a 

high-dimensional space. 

ϕ: ℝⁿ → ℋ 

 

ℋ contains the optimal hyperplane which maximizes the margin 

between the support vectors, while the SVM problem is 

formulated as follows:  

min ½||w||² + C∑ξᵢ s.t. yᵢ(w⋅ϕ(xᵢ) + b) ≥ 1 - ξᵢ ξᵢ ≥ 0 

 

where w is the weight vector, b is the bias term, C is the 

regularization parameter, ξᵢ are the slack variables, and yᵢ 

represents the target class label (+1 or -1). 

New instances are classified based on the sign of  

(w⋅ϕ(x) + b). 

 

Naive Bayes: 

For a given dataset X = {(x₁, y₁), (x₂, y₂), ..., (xₙ, y, where xᵢ = (xᵢ₁, 

xᵢ₂, ..., xᵢₘ) ∈ ℝᵐ is a set of real numbers that make up the feature 

vectors of the datset and yᵢ ∈ Y , where Y is the set of target class 

labels. For P(y) being the prior probabilities for each class y 

based on X, the conditional probabilities are P(xⱼ|y) for each 

feature xⱼ given each class y. New instances x* are classified by 

calculating the posterior probabilities P(y|x*) for each class y and 

selecting the class with the highest probability using the given 

formulae 

Bayes' theorem:  

P(y|x) = (P(x|y) * P(y)) / P(x) 

 

Naive Bayes assumption (feature independence):  

P(x|y) = ∏ P(xⱼ|y) 

 

Xie’s Metamorphic Relations 

Xie et al presented 11 metamorphic relations for machine 

learning classifiers. These metamorphic relations represent the 

necessary properties of Machine learning algorithms. The 

following table discusses the MRs in detail. 

 

 

 

 

Xie’s Metamorphic Relations 

Sr 

no 
Name Category Description 

1 

Consistence 

with affine 

transformation 

Transformation 

This MR states that the ML model should be immune to any affine 

transformations that are applied to the dataset. If we multiply any 

column with a constant number and add a constant number to it. The 

model trained on the new dataset should be no different from the 

original model. 

2 
Permutation of 

class labels 
Permutation 

If the class labels in the dataset are swapped in a ‘one to one’ manner 

than the new dataset should give the same output as the original 

dataset.  
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3 
Permutation of 

the attribute 

If the values of the attributes are shuffled within the training set as 

well as the test set, then the model created with the follow-up dataset 

should behave no different than the original model. 

4 

Addition of 

uninformative 

attributes 

Attribute 

Addition 

If a new attribute is added to the dataset that has no association or 

correlation with any class label, then this shouldn’t affect the 

outcome of the follow-up model. 

5 

Addition of 

informative 

attributes 

If an attribute is added to the training dataset that is strongly 

associated with only one class label and it is not associated with the 

other class labels then this should not affect the predictions made by 

the follow-up dataset. 

6 

Consistence 

with re-

prediction 
Prediction 

Augmentation 

If we take a single test case along with its class label and append it to 

the training data. Then this will not affect the predictions for the 

same test case 

7 

Additional 

training 

sample 

If a few test cases with a certain label along with their class labels are 

duplicated and added back to the dataset. This should not affect the 

output for the follow-up models predictions for that class.  

8 

Addition of 

classes by 

duplicating 

samples 

Duplication 

If all the samples which are associated with class labels accept one 

particular class label ‘l’ are duplicated and then their class labels are 

changed by appending a * with them then the unduplicated samples 

will still have the same prediction as before. 

9 

Addition of 

classes by re-

labeling 

samples 

If all the samples accept for the ones that are associated with a certain 

class label are relabeled, the predictions for the specific class should 

still remain the same. 

10 
Removal of 

classes 

Class Removal 

If an entire class is removed from the training data which is other 

than a specific class label ‘l’, then all the predictions made by the 

algorithm regarding ‘l’ should remain unaffected. 

11 
Removal of 

samples 

If some random samples are removed from the training set along 

with their class labels where they are not associated with the class 

label ‘l’ then the model’s predictions for ‘l’ should remain 

unchanged. 

 
 

III. ACCURACY, COVERAGE AND KILL RATE 

Accuracy for a model is the no of correct predictions made by a 

model as compared to the actual predictions [13, 47-50]. It is 

commonly used as a metric to evaluate machine learning 

classifiers [13, 47]. Xie’s metamorphic relations are based on the 

consistency of the prediction when applying the MRs. Therefore,  

 

 

 

if the MRs are applied correctly, the overall accuracy of the 

results should not change too much. The tables below give the 

accuracy for the classifiers when the MRs are applied to them 

with two datasets. There is very little change in the accuracy of 

the test suites when the MRs are applied. 

 
ACCURACIES FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH IRIS 

 SVM KNN ANN NB ID3 

No MR 1.0 1.0 1.0 1.0 1.0 

MR-0 0.93 .98 0.96 .96 0.98 

MR-1.1 1.0 1.0 1 1 1 
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MR-1.2 1.0 .98 1 1 1 

MR-2.1 0.98 1.0 1 1 1 

MR-2.2 1.0 .98 0.98 .98 1 

MR-3.1 1.0 1.0 .97 .98 1 

MR-3.2 1.0 .98 .96 .98 1 

MR-4.1 1.0 1.0 1 .97 1 

MR-4.2 0.87 1.0 .96 .96 .98 

MR-5.1 1.0 .98 1 1 1 

MR-5.2 0.98 .97 .97 .97 .97 

Table 1: Accuracy for Iris 

 

Since the accuracies do not change too much after the MRs’ are 

applied, that shows that the Xie’s MRs were correctly 

implemented and they are working as they should. If the 

accuracies change too much after the MRs are applied, that 

indicates there are issues, either in the implementation or the MR 

itself is faulty. The variation in the accuracy depends on the 

accuracy of the model as well. 

 

 

ACCURACIES FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH TITANIC 

 SVM KNN ANN NB ID3 

No MR 1.0 1.0 1.0 1.0 1.0 

MR-0 1.0 1.0 1.0 1.0 1.0 

MR-1.1 1.0 1.0 1.0 1.0 1.0 

MR-1.2 1.0 1.0 1.0 1.0 1.0 

MR-2.1 1.0 1.0 1.0 1.0 1.0 

MR-2.2 1.0 1.0 1.0 1.0 1.0 

MR-3.1 1.0 1.0 1.0 1.0 1.0 

MR-3.2 1.0 1.0 1.0 1.0 1.0 

MR-4.1 1.0 1.0 1.0 1.0 1.0 

MR-4.2 1.0 1.0 0.98 1.0 1.0 

MR-5.1 1.0 0.98 1.0 0.98 0.98 

MR-5.2 0.98 1.0 1.0 1.0 1.0 

Table 2: Accuracy for Titanic 

 

Coverage is a metric often used in classic testing techniques [51-

55] that is used to measure the extent to which the test cases 

cover the code. It represents the thoroughness of the testing 

process and provides the assurance that all or most parts of the 

system under test is covered at least once. It also is a good 

guideline to assess the need of additional testing. When 

metamorphic testing is used, coverage is not taken into 

consideration, which means that there is a possibility that a 

system needed more testing where the testing effort is stopped 

prematurely, or vice versa. The tables below show the coverage 

achieved when Xie’s MRs are applied to test the code for the 

implementation of the chosen classifiers from the Scikit-learn 

library for python [42-46, 54]. The coverage values recorded 

here are for statement coverage and branch coverage, which are 

two types of white box coverage [40, 41, 56] i.e. the type of 

testing where the code of the system under test is available. 

 

Statement coverage is a testing criterion that aims to cover every 

statement in the code at least once. It measures the lines of code 

that were exercised at least once out of the total number of lines 

in the code, whereas the branch coverage attempts to cover all 

the branches within the code at least once.  

 

 

STATEMENT COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH IRIS 

 SVM KNN ANN NB ID3 

No MR 67/120 =55.8 59/37 = 62.7 156/362 = 43 63/123 = 51.22 124/265 = 46.7 

MR-0 55.8 62.7 43 51.22 46.7 

MR-1.1 55.8 62.7 43 51.22 46.7 

MR-1.2 55.8 62.7 43 51.22 46.7 

MR-2.1 55.8 62.7 43 51.22 46.7 

MR-2.2 55.8 62.7 43 51.22 46.7 

MR-3.1 55 62.7 43 51.22 46.7 
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MR-3.2 55.8 62.7 43 51.22 46.7 

MR-4.1 55.8 62.7 43 51.22 46.7 

MR-4.2 55.8 62.7 43 51.22 46.7 

MR-5.1 55.8 62.7 43 51.22 46.7 

MR-5.2 55.8 62.7 43 51.22 46.7 

Table 3: Statement Coverage for Iris 

 

 

   It is important to note that the coverage, be it statement 

coverage or branch coverage is not correlated with the 

metamorphic relations in any way and when dealing with simpler 

code like that of KNN, achieving complete coverage can be a 

simple matter of adding a few more tests to the system. But when 

dealing with code that is complex and has a lot of nested 

condition within each other like the code for ID3 and ANN 

manually adding MTs becomes a tedious task and may cost a lot 

of time and energy to do so. The coverage mentioned here is the 

coverage that was recorded after training the sci-kit learn 

algorithms with the two datasets and then finding their accuracy. 

 

 
STATEMENT COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH TITANIC 

 SVM KNN ANN NB ID3 

No MR 55.8 51.78 42.3 46.39 48.4 

MR-0 55.8 51.78 42.3 46.39 48.4 

MR-1.1 55.8 51.78 42.3 46.39 48.4 

MR-1.2 55.8 51.78 42.3 46.39 48.4 

MR-2.1 55.8 51.78 42.3 46.39 48.4 

MR-2.2 55.8 51.78 42.3 46.39 48.4 

MR-3.1 55.8 51.78 42.3 46.39 48.4 

MR-3.2 55.8 51.78 42.3 46.39 48.4 

MR-4.1 55.8 51.78 42.3 46.39 48.4 

MR-4.2 55.8 51.78 42.3 46.39 48.4 

MR-5.1 55.8 51.78 42.3 46.39 48.4 

MR-5.2 55.8 51.78 42.3 46.39 48.4 

Table 4: Statement Coverage for Titanic 
 

 

The tables below show the branch coverage of the classifiers 

with Iris and Titanic. These tables show that the coverage 

achieved is not affected by dataset being used and since all the 

MRs make changes to the dataset, the coverage does not change 

much from one MR to another. 

 

BRANCH COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH IRIS 

 SVM KNN ANN NB ID3 

No MR 0 16.66 5 31.2 5 

MR-0 0 16.66 5 31.2 5 

MR-1.1 0 16.66 5 31.2 5 

MR-1.2 0 16.66 5 31.2 5 

MR-2.1 0 16.66 5 31.2 5 

MR-2.2 0 16.66 5 31.2 5 

MR-3.1 0 16.66 5 31.2 5 

MR-3.2 0 16.66 5 31.2 5 

MR-4.1 0 16.66 5 31.2 5 

MR-4.2 0 16.66 5 31.2 5 

MR-5.1 0 16.66 5 31.2 5 

MR-5.2 0 16.66 5 31.2 5 

Table 5: Branch Coverage for Iris 
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Kill rate or the mutant kill rate is the measure of the effectiveness 

of the test suite. It is basically a testing technique to evaluate test 

suite. It is a metric that represents the ability of a test suite to  

 

uncover faults or mutants. Mutants are generally artificial faults 

fed into the system by making small changes in the code that do 

not result in syntax errors but introduce faults into the system. 

 

 
BRANCH COVERAGE FOR THE CLASSIFIERS AFTER APPLYING METAMORPHIC  

RELATIONS WITH TITANIC 
 SVM KNN ANN NB ID3 

No MR 0 16.66 5.2 31.25 6.25 

MR-0 0 16.66 5.2 31.25 6.25 

MR-1.1 0 16.66 5.2 31.25 6.25 

MR-1.2 0 16.66 5.2 31.25 6.25 

MR-2.1 0 16.66 5.2 31.25 6.25 

MR-2.2 0 16.66 5.2 31.25 6.25 

MR-3.1 0 16.66 5.2 31.25 6.25 

MR-3.2 0 16.66 5.2 31.25 6.25 

MR-4.1 0 16.66 5.2 31.25 6.25 

MR-4.2 0 16.66 5.2 31.25 6.25 

MR-5.1 0 16.66 5.2 31.25 6.25 

MR-5.2 0 16.66 5.2 31.25 6.25 

Table 6: Branch Coverage for Titanic 

 

 

The better a test suite is the higher its kill rate will be. The tables 

below show the kill rate for Xie’s MRs for the the five classifiers 

used in the study. The mutants are added in such a way that they 

are evenly distributed throughout the code. Although it is not 

possible to add mutants to the parts of the code that use built in  

 

 

function calls and do not have many mutant operators that can be 

modified. This is what happened with SVM and KNN. The green 

parts of the tables represent the mutants that are killed by the 

MRs and the red part represents the mutants that are in the part of 

the code that is not covered by either statement or branch 

coverage. 

 

 

Kill rate for the metamorphic relations for ANN with the  

Titanic Dataset 

Total lines of Code: 1518 

Sr 

no 
Mutant 

MR-

0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 += to -=            
2 !=  to ==            
3 [i+1] to [i-1]            
4 += to -=            
5 !=  to ==            
6 /= to *=            
7 == to !=            
8 -1 to +1            
9 305: += to -=            
10 307:* to /            
11 317:- to +            
12 348: Delete not            
13 353:== to !=            
14 362: -1 to +1            
15 384: 2 to 3            
16 387:/ to *            
17 414: removed not            
18 416: REMOVED            
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NOT 

19 424: == to !=            
20 427: -1 TO 1            
21 445: -to +            
22 450: 

layer_units[1:] to 

layer_units[1:10] 
           

23 455: [1:]   

to[1:10]            

24 566: True to 

False            

25 566: >= to <=            
26 570: -1 to +1            
27 590: + to -             
28 597: == to !=            
29 607:and to or            
30 619:0 to 1            
31 624: min to max            
32 628: <1 TO >1            
33 628: or to and            
34 636: not added            
35 644: 0.0 TO 1.0            
36 647: not added            
37 655: 0 to 1            
38 662: += TO -=            
39 662: - TO +            
40 662: * to /            
41 667: + to -            
42 671: += TO -=            
43 673 * TO /            
44 675 += TO -=            
45 691: not added            
46 704: not added            

47 
706 break to 

continue            

48 713: == TO !=             
49 739: > TO <            
50 741: += TO -=            
51 742: += to  -+            
52 752: [-1] to [1]            
53 755: += to -=            
54 760: [-1] to [1]            
55 1056: max_iter = 

200 to max_iter= 

-200 
           

56 1082:== TO !=            
57 1107: removed 

not            

58 1107: or to and            
59 1109 removed 

not            

60 
1109 removed 

second not            

61 1122 != to ==            
62 1158 == TO !=            
63 1189: Removed            
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not 

64 1243: == TO !=            
65 1248 – TO +            
66 1533: == TO !=            
67 1544: == TO !=            
  4% 3% 3% 6% 25% 7% 1% 6% 6% 0% 3% 

14/67 = 20.8% 

Table 7: Mutation Coverage for ANN with Titanic 

 

As per the detailed coverage report for ANN when it is trained 

with titanic and then tested with the metamorphic relations MR-0 

to MR5.2, 43% of the statements are covered. The kill rate for 

the metamorphic relations with 67 mutants is 6% where the 

highest kill rate is 25% by MR-2.2 and the lowest is 0% by MR-

5.1. The mutants are generated in such a way that they are evenly 

distributed throughout the algorithms and every mutant is 

individually tested multiple times to ensure that the kill is due to 

the MRs and not due to the misclassification by the model. 38 

out of 67 mutants were in the part of the code that is never 

covered by either statement coverage or branch coverage. 

Therefore the mutants that are executed are 29 and out of these 

29 mutants the mutants that are killed is equal to 14. That brings 

the kill rate to 48% which is significantly higher that the initial 

6%. 

 
Kill rate for the metamorphic relations for ANN with the  

Iris Dataset 

Sr 

no 
Mutant 

MR-

0 
MR-

1.1 
MR-

1.2 
MR-

2.1 
MR-

2.2 
MR-

3.1 
MR-

3.2 
MR-

4.1 
MR-

4.2 
MR-

5.1 
MR-

5.2 

1 += to -=            

2 !=  to ==            

3 [i+1] to [i-1]            

4 += to -=            

5 !=  to ==            

6 /= to *=            

7 == to !=            

8 -1 to +1 - - - - - - - - - - - 

9 305: += to -=            

10 307:* to /            

11 317:- to +            

12 348: Delete not            

13 353:== to !=            

14 362: -1 to +1 - - - - - - - - - - - 

15 384: 2 to 3            

16 387:/ to *            

17 413: removed not            

18 416: removed not            

19 424: == to !=            

20 427: -1 TO 1            

21 445: -to +            

22 450: 

layer_units[1:] to 

layer_units[1:10] 
           

23 455: [1:]   

to[1:10]            

24 566: True to False            

25 566: >= to <=            

26 570: -1 to +1            
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27 590: + to -             

28 597: == to !=            

29 607:and to or            

30 619:0 to 1            

31 624: min to max            

32 628: <1 TO >1            

33 628: or to and            

34 636: not added            

35 644: 0.0 TO 1.0            

36 647: not added            

37 655: 0 to 1            

38 662: += TO -=            

39 662: - TO +            

40 662: * to /            

41 667: + to -            

42 671: += TO -=            

43 673 * TO /            

44 675 += TO -=            

45 692: not added            

46 704: not added            

47 
706 break to 

continue            

48 713: == TO !=             

49 739: > TO <            

50 741: += TO -=            

51 742: += to  -=            

52 752: [-1] to [1]            

53 755: += to -=            

54 760: [-1] to [1]            

55 1056: max_iter = 

200 to max_iter= 

-200 
           

56 1082: == TO!=            

57 1107: removed 

not            

58 1107: or to and            

59 1109 removed not            

60 1109 removed 

second not            

61 1122 != to ==            

62 1158 == TO !=            

63 1189: Removed 

not            

64 1243: == TO !=            

65 1248 – TO +            

66 1533: == TO !=            

67 1544: == TO !=            

  18% 15% 12% 16% 13% 13% 15% 16% 21% 12% 16% 

13/67 = 19.4% 

Table 8: Mutation Coverage for ANN with Iris 

 

ANN was trained with titanic to see if the results are any 

different. The same mutants were added at the same points again 

to see if the results are same with a different dataset. 36 mutants 

in this case were in the uncovered part of the algorithm, which 

makes the mutants that were covered and killed 41.9%.  its 
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interesting to not that some of the mutants that were in the uncovered part with iris were in the covered part with titanic.

 

 

 

Kill rate for the metamorphic relations for ID3 with the 
Iris Dataset 

No of lines of Code: 1833 

Sr 
no 

Mutant MR-0 
MR-
1.1 

MR-
1.2 

MR-
2.1 

MR-
2.2 

MR-
3.1 

MR-
3.2 

MR-
4.1 

MR
-

4.2 

MR-
5.1 

MR-
5.2 

1 132: 0.0 to 1.0            
2 161: added not            
3 172: added not            
4 180 < to >            
5 188: += to -+            
6 203: or to and            
7 203: != to ==            
8 208: < to >            
9 204: <= to >=            

10 237: y to y+1            

11 
242: removed 
not 

           

12 259: != to ==            
13 277: > to <            
14 277: <= to >=            
15 283: * to /            
16 287: >= to <=            
17 294: < to >            
18 301:max to min            
19 304: max to min            
20 206: * to /            
21 312: max to min            
22 316: == to !=            
23 318: max to min            
24 321: max to min            
25 332:> to <            
26 345: <=to >=            
27 360: <2 to >2            

28 
365: removed 
not            

29 
369: removed 
not            

30 
372: removed 
not 

           

31 382: * to /            
32 386:* to /            
33 400: < to >            
34 408: < to >            
35 415: != to ==            

36 
427: removed 
not 

           

37 461: 1 to 0            
38 462: * to /            
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39 487: and to or            

40 
502: False to 
True 

           

41 507: or to and            
42 508: != to ==            

43 
515: False to 
True  

          

44 545 x to X+1            
45 550: added not            
46 571: == to !=            
47 636:> to <            
48 641 == to !=            
49 654 * to /            

50 
980: True to 
False            

51 1055: == to !=            
52 1057: /= to *=            
53 1069: == to !=            
54 1071: /= to *=            
55 1096: == to !=            
56 1849: 2 to 3            

 
 

20% 4% 4% 4% 4% 4% 4% 4% 
13
% 

4% 4% 

9/56 = 16.07% 

Table 9: Mutation Coverage for ID3 with Iris 

 

 

Iris is one of the most popular datasets for classification, because 

of its high accuracy and the quality of being balanced. Very little 

pre- processing is needed to work with Iris. ID3 was trained with 

Iris and overall kill rate for ID3 with Iris was 14%, since 8 out of 

56 mutants were killed by test suite on the whole. The statement  

 

 

and branch coverage with this dataset and ID3 are 46.7% and 

5%. The code for ID3 is different from the others in the fact that 

it has a large number of nested conditional statements. The 

covered and uncovered parts are highly segregated because of the 

multiple conditions and the parts within them that remain 

uncovered. 

 

Kill rate for the metamorphic relations for ID3 with the  

Titanic Dataset 

No of lines of Code: 1833 
Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 132: 0.0 to 1.0            
2 161: added not            
3 172: added not            
4 180 < to >            
5 188: += to -=            
6 203: or to and            
7 203: != to ==            
8 208: < to >            
9 214: <= to >=            

10 237: y to y+1            
11 242: removed not             
12 259: != to ==            
13 277: > to <            
14 277: <= to >=            
15 283: * to /            
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16 287: >= to <=            
17 294: < to >            
18 301:max to min            
19 304: max to min            
20 206: * to /            
21 312: max to min            
22 316: == to !=            
23 318: max to min            
24 321: max to min            
25 332:> to <            
26 345: <=to >=            
27 360: <2 to >2            
28 365: removed not            
29 369: removed not            
30 372: removed not            
31 382: * to /            
32 386:* to /            
33 400: < to >            
34 408: < to >            
35 415: != to ==            
36 427: removed not            
37 461: 1 to 0            
38 462: * to /            
39 487: and to or            
40 502: False to True            
41 507: or to and            
42 508: != to ==            
43 515: False to True            
44 545 x to X+1            
45 550: added not            
46 571: == to !=            
47 636:> to <            
48 641 == to !=            
49 654 * to /            
50 980: True to False            
51 1055: == to !=            
52 1057: /= to *=            
53 1069: == to !=            
54 1071: /= to *=            
55 1096: == to !=            
56 1849: 2 to 3            

  14% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 

6/56 = 10.71% 
Table 10: Mutation Coverage for ID3 with Titanic 

 

 

To verify that the kill rate and coverage value are due to the MRs 

and are not affected by the choice of the algorithm or the dataset 

being used, ID3 was trained with Titanic and 5 out of 56 mutants  

 

were killed. 23 were not covered and 28 survived despites being 

covered. This makes the kill rate for the mutants that were in the 

covered part 16%. As it is apparent from the above table the 

covered parts here as well are segregated. 

 

 

Kill rate for the metamorphic relations for SVM with the 

Titanic Dataset 

No of lines of Code: 1496 

Sr Mutant MR- MR- MR- MR- MR- MR- MR- MR- MR- MR- MR-
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no 0 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 

1 
211: Verbose = 

0 to verbose=1 
           

2 250: < to >            

3 
158: False to 

True 
           

4 269: and to or            
5 270: == to !=            
6 217: -1 to 1            
7 275: 0 to 1            
8 450: < to >            

9 
457: False to 

True 
           

10 
687: 1e -3 to 

1e+3 
           

11 909: -1 to 1            
12 1077: -1 to 1            
13 1247: -1 to 1            

14 
1386: False to 

True 
           

15 1451: + to -            
  0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 

1/15= 6.66% 

Table 11: Mutation Coverage for SVM with Titanic 

 

 

The number of mutants in SVM are a lot less than the other 

algorithms, although the lines of code is big. This reason for this 

is that the code contained very few mutant operators that could 

be modified, which limits the number of mutants that can be 

added to the code. Another reason is that the code was largely 

composed of function calls and other language specific 

constraints which cannot be easily mutated. 10 out of 15 mutants 

are in the area that was not covered, resulting in 1 mutant being 

killed and 4 mutants were covered and they survived. The kill 

rate for the covered mutants is 20%. 

 

 

Kill rate for the metamorphic relations for SVM with the  

Iris Dataset 

No of lines of Code: 1496 
Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 
211: Verbose = 0 to 

verbose=1 
           

2 250: < to >            
3 158: False to True            
4 269: and to or            
5 270: == to !=            
6 217: -1 to 1            
7 275: 0 to 1            
8 450: < to >            
9 457: False to True            
10 687: 1e -3 to 1e+3            
11 909: -1 to 1            
12 1077: -1 to 1            
13 1247: -1 to 1            
14 1386: False to True            
15 1451: + to -            
  0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 

1/15 = 6.66% 
Table 12: Mutation Coverage for SVM with Iris 
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The code for KNN has 382 lines which is relatively less than the 

other algorithms and there is a lack of mutants in the code as well 

so there are only 11 mutants for it. Only three mutants out of 

these 11 were covered and no mutants were killed for either Iris 

or Titanic. 

 

 

 

Kill rate for the metamorphic relations for KNN with the  

Iris Dataset 

No of lines of Code: 382 

Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 185: 5 to -5            
2 239: X to X+1            
3 258: X to X+1            
4 284: removed not            

5 
318: Removed 

not            

6 322: -1 to 1            

7 
neigh_ind to 

neigh_ind +1            

8 358:  : to :10            
9 366 == to !=            

10 370: /= to *=            
11 357: 0 to 1            
  0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

0/11 = 0% 
Table 13: Mutation Coverage for KNN with Iris 

 

 

 
Kill rate for the metamorphic relations for KNN with the  

Titanic Dataset 

No of lines of Code: 382 
Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 185: 5 to -5            
2 239: X t0 X+1            
3 258: X to X+1            
4 284: removed not            

5 
318: Removed 

not            

6 322: -1 to 1            

7 
neigh_ind to 

neigh_ind +1            

8 358:  : to :10            
9 366 == to !=            
10 370: /= to *=            
11 357: 0 to 1            
  0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

0/11 = 0% 
Table 14: Mutation Coverage for KNN with Titanic 

 

 
Kill rate for the metamorphic relations for Naïve Bayes with the  
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Iris Dataset 

No of lines of Code: 522 
Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 147: X to X+1            
2 152: - to +            
3 235: 1e-9 to 1e+9            
4 264: True to False            
5 266: True to False            
6 313: == to !=            
7 323: 2 to 3            
8 328: 0 to 1            
9 333: == to !=            

10 338: + to -            

11 
345: n_new * to 

n_new /            

12 345: n_new + to -            
13 346: / to *            
14 353: * to /            
15 355: * to /            
16 357: + to -            
17 359:* to /            
18 406: False to True            
19 438: Removed not            
20 449: * to /            
21 461: 0 to 1            
22 475: != to ==            
23 481: Removed not            
24 486: < to >            
25 496 != to ==            
26 502 : to :10            
27 518: == to !=            
28 522: == to !=            
29 527: 0 to 1            
30 531: : to :10            
31 534: : to :10            
32 537: += to -=            
33 540: += to -=            
34 547: / to *            
35 557: - to +            
36 560:* to /            
37 560: - to +            
38 563: + to -            
  16% 16% 3% 16% 16% 16% 5% 16% 21% 16% 5% 

8/38 = 21.05% 
Table 15: Mutation Coverage for Naïve Bayes with Iris 

 

 

8 mutants were killed out of 38 mutants that were added to Naïve 

Bayes. 16 mutants were in the uncovered parts of the code. Naïve  

 

 

Bayes had a code coverage of 46.4 and 31.5 % for statement and 

branch coverage and the overall kill rate for the MRs was 21% 

for Iris and 7.8% for Titanic. 
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Kill rate for the metamorphic relations for Naïve Bayes with the  

Titanic Dataset 

No of lines of Code: 522 
Sr 

no 
Mutant MR-0 

MR-

1.1 

MR-

1.2 

MR-

2.1 

MR-

2.2 

MR-

3.1 

MR-

3.2 

MR-

4.1 

MR-

4.2 

MR-

5.1 

MR-

5.2 

1 147: X to X+1            
2 152: - to +            
3 235: 1e-9 to 1e+9         x x x 
4 264: True to False            
5 266: True to False            
6 313: == to !=         x x x 
7 323: 2 to 3            
8 328: 0 to 1            
9 340: == to !=            

10 344: + to -            

11 
352: n_new * to 

n_new /            

12 352: n_new + to -            
13 352: / to *            
14 359: * to /            
15 361: * to /            
16 363: + to -            
17 365:* to /            
18 412: False to True            
19 443: Removed not - - - - - - - - - - - 
20 454: * to /            
21 461: 0 to 1 - - - - - - - - - - - 
22 478: != to ==            
23 485: Removed not            
24 489: < to >            
25 500 != to ==            
26 506 : to :10            
27 521: == to !=          x  
28 526: == to !=            
29 531: 0 to 1            
30 535: : to :10            
31 538: : to :10            
32 541: += to -=            
33 544: += to -=            
34 550: / to *            
35 559: - to +            
36 563:* to /            
37 563: - to +            
38 563: + to -            
  8% 8% 8% 8% 8% 8% 8% 13% 8% 5% 8% 

3/38 = 7.89% 
Table 16: Mutation Coverage for Naïve Bayes with Titanic 

 

 

IV. ANALYSIS & FINDINGS 

It is clear from the above discussion that more than 50% when 

testing with Xie’s MR’s don’t get detected at all because they lie 

in the part of the code that is never exercised either by statement 

or branch coverage. Although the kill rate of the given MRs is 

independent the code covered, because the kill rate is affected by 

a complex set of factors like the quality of the test cases, the type 

and the diversity of the mutants used and the effectiveness of the 
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test cases. The fact still holds that if the mutants that are in the 

uncovered part of the code could get executed, it is possible that 

some of the mutants might get killed and increase the overall kill 

rate of the test Suite.  

 

    We found a strong correlation between the number of mutants 

that were not killed and the number of mutants that were not 

covered. To see if this correlation held statistically, the data form 

the kill rate and the coverage was used to find the Pearson’s 

Correlation and the P-Value for the number of uncovered 

mutants and the number of mutants that were not killed. The 

Pearson’s Correlation coefficient came out to: 

0.956453459441019 and the P-Value is 1.4925035439266146e-

05. This value shows a strong correlation between the two 

categories and the P-value shows statistically that the likelihood 

of the correlations to have occurred by chance is very low.  The 

graphs below show the visual representation of the findings

 

 

 

 

   

Which means that if the number of uncovered mutants is 

reduced, it may result in the reduction of the number of mutants 

that have survived. 

V. CONCLUSION 

This study quantifies the effectiveness of detecting faults of 
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Xie’s metamorphic relations (MRs) by finding the kill rate for 

the MRs after applying them to the classifiers from Sci-kit learn 

library from Python. Along with this, statement and branch 

coverage were measured before and after applying the MRs. It 

was observed that there is a negligible impact of MRs on the 

coverage of the code, which implies that there exists unchecked 

code when testing with MRs. Another finding is the existence of 

a robust positive correlation between the uncovered mutants and 

the ones that survived. This observation suggests that the MRs 

may exhibit limitations in effectively identifying a broad 

spectrum of faults. Consequently, future research should focus on 

incorporating coverage as a metric to enhance the efficacy of 

testing ML algorithms. 

 

VI.  FUTURE WORK 

Future work can build upon the insights provided by this work 

by taking into consideration coverage as one of the metrics for 

testing Machine Learning classifiers, to address the limitations 

inherent in the MRs. This makes it necessary to develop 

innovative techniques and methodologies that can ensure the 

coverage of the code along with Metamorphic testing. 

Automated generation of MRs that target uncovered parts of the 

code can be instrumental in this regard. Further investigation into 

the impact of coverage-based testing on the overall effectiveness 

of the MRs is also needed to better understand intricacies of 

using coverage as a metric for metamorphic testing in different 

domains and areas. Furthermore ,work to rectify the coverage 

limitation of MR might result in optimizing the MRs and make 

them more effective. 
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