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Abstract 

One of the essential areas of study in RNA epigenetics is the role of RNA 5-

hydroxymethylcytosine (5hmC), which has been implicated in numerous biological processes. The 

identification of 5hmC can be achieved using multiple sequencing-based technologies; however, 

these existing approaches are time-consuming, expensive, and labor-intensive. Therefore, there is 

a significant need to develop more reliable, efficient, and feasible computational methods to 

replace or, ideally, complement high-throughput technologies. Despite developing different deep 

learning and machine learning models, their performance is currently insufficient and limited. In 

this study, we proposed a new identification scheme for deep learning, specifically a bidirectional 

recurrent neural network (BiRNN), called iRhm5BiRNN which overcomes the restriction of using 

only input information up to a present future frame for training. The BiRNN is trained 

simultaneously in both forward and backward directions, enabling it to accurately identify RNA 

5hmC sites in genome-wide DNA sequences efficiently and reliably. Our approach utilizes a 

Bidirectional Recurrent Neural Network (BiRNN) to derive the most dependable features from the 

constantly changing RNA sequences. We achieved an accuracy of 85.51% on the benchmark 

dataset using our proposed architecture, surpassing the performance of existing methods in all 

evaluation metrics. These findings demonstrate the superiority of our approach and its potential to 

advance the field of RNA epigenetics. 
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1. INTRODUCTION 

Over the past few years, the identification of RNA has presented numerous complex challenges. 

Among these challenges, RNA modification is one of the most essential and demanding scientific 

endeavors [1]. The discovery of chemically modified nucleosides and pseudouridines dates back 

to 1950 [2]. Since, more than 160 distinct RNA modifications have been identified in various RNA 

types, including mRNA, tRNA, rRNA, and snRNA [3]. These modifications also affect critical 

RNA processes such as pre-RNA splicing, RNA export, and microRNA translation. Furthermore, 

RNA alterations have been linked to various human disorders, including cardiovascular disease, 

cancer, obesity, and diabetes [4]. Characterizing the distribution of RNA modifications in the 

transcriptome is crucial for understanding their biological properties. For instance, the 

hydroxymethylcytosine (hMeC) modification is likely to be oxidized by the Tet family of 

enzymes, suggesting that 5hmC is predominantly found within exons and introns of coding regions 

[5-7]. Studies have reported a high concentration of 5hmC alterations in the Drosophila brain and 

significant levels of 5hmC modification in the brain stem, cerebellum, and hippocampus, with 

evidence that 5hmC identification and modification reduce the MPTP-induced Parkinson's model 

in mice [8]. These findings indicate that RNA 5hmC modification affects microRNA expression 

and proteins in brain tissue. Additionally, 5hmC is involved in the epigenetic regulation of gene 

expression through altered interactions between RNA and proteins [9]. To further understand the 

effects of 5hmC in different organisms, it is necessary to examine its presence in the transcriptomes 

of other species. Previous studies have employed the hMeRIP-seq method to study Drosophila 

5hmC's transcriptome [10]. However, there are drawbacks to using hMeRIP-seq and wet lab 

investigations to detect 5hmC sites throughout the genome. These drawbacks include the high cost 

of experimental reagents and the time and labor-intensive nature of the procedures. To address 

these limitations, developing a computational model becomes crucial, as it can identify 5hmC 

modification sites with greater accuracy, efficiency, and cost-effectiveness compared to traditional 

methods. This is especially significant given the increasing number of genome samples that need 

analysis. The research indicates a high prevalence of 5hmC deficiencies in the Drosophila brain. 

Similarly, previous studies have shown significant enrichment of 5hmC modifications in the 

mouse brain stem, hippocampus, and cerebellum. These findings suggest that 5hmC modification 

may be critical in brain tissue development [11]. Understanding the biological functions of 5hmC 

in the transcriptomes of different species is essential; however, the distribution of 5hmC in most 
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animal species still needs to be more adequately examined. The iRNA5hmC model is currently 

being developed as the first machine-learning model to predict RNA 5hmC modifications solely 

based on RNA sequence information [12]. It utilizes the k-mer spectrum and positional nucleotide 

binary vector as feature representations, offering robust alternatives to the standard methods. 

Although the performance of iRNA5hmC is commendable, there is still room for further 

improvement. Another computational model called iRhm5CNN has been used recently, employing 

a CNN architecture to extract significant aspects of primary RNA sequence representations for 

accurate identification of RNA [13]. While these existing approaches have shown significant 

progress in predicting RNA 5hmC, their accuracy still needs enhancement [12]. In this study, we 

proposed a simple yet effective architecture based on Bidirectional Recurrent Neural Networks 

(BiRNNs) for identifying RNA 5hmC sites solely based on the RNA sequences. We aimed to 

develop a sophisticated system to accurately identify RNA 5hmC sites without relying on pre-

selected features or categorization. This approach offers the advantages of speed and high accuracy 

in predicting RNA 5mC sites based on primary RNA sequences. Deep learning-based 

computational models have proven highly efficient and effective in various applications, including 

sequencing, sentiment analysis, and natural language processing [14-16]. RNA sequences are 

represented using one-hot encoding, and we provide an overview of the chemical components of 

nucleotides, including functional groups, hydrogen bonds, ring configurations, and functions. By 

extracting key features from primary RNA sequence representations, the BiRNN architecture 

reliably identifies 5hmC RNA sequences. To evaluate the effectiveness of our approach, we 

conducted subsampling with a five-fold cross-validation. The iRhm5BiRNN model outperforms 

current state-of-the-art techniques such as iRNA5hmC [12] and iRhm5CNN [13] by a large 

margin, as demonstrated by experimental results. The iRhm5BiRNN achieves superior 

performance in terms of accuracy, AU ROC, AU PR, sensitivity, specificity, and MCC, reaching 

values of 85.51%, 93.22%, 93.58%, 82.38%, 88.63%, and 71.16%, respectively. These findings 

surpass the results reported in previous studies by a significant margin. Considering these factors, 

our method has the potential to become an accurate and efficient tool for detecting 5hmC.  
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Figure 1. The proposed model framework. 

 

2. MATERIALS AND METHODS DATASET 

We present the benchmark dataset of deep learning techniques for predicting the RNA5hmC site, 

and the performance evaluation is all discussed in this section. 
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2.1. Dataset 

A crucial aspect of developing a high-caliber bioinformatics tool is carefully selecting a reliable 

training dataset for the predictive model [17]. In this regard, Liu et al. [12] designed and 

implemented a dataset encompassing positive and negative samples. The balanced dataset consists 

of 1324 samples, with an equal distribution of 662 positive and 662 negative samples. Positive 

samples were obtained from Delatte et al. [10] and were characterized by 5hmC at the center. 

These positive samples were selected based on a less than 80% sequence similarity criterion. To 

obtain negative samples (i.e., non-5hmC sequences), the remaining intermediate cytosines that 

could not be identified as 5hmC using hMeRIP-seq were included. The length of each sample in 

the dataset was set to 41 nucleotides (nt). This comprehensive dataset forms the foundation for 

training the predictive model and enables the accurate identification of 5hmC sites. 

 

2.2. Prediction Assuming Independent Outputs 

2.2.1. Convolutional Neural Network 

The Convolutional Neural Network (CNN) is a widely recognized discriminative deep learning 

model that eliminates the need for manual feature extraction by learning directly from the input 

data [14]. Figure 2 illustrates a CNN architecture consisting of multiple convolutional and pooling 

layers. The design of CNNs brings advantages to traditional Artificial Neural Networks (ANNs), 

such as regularized MLP networks. Each layer of a CNN considers the optimal parameters to 

generate useful outputs while simultaneously reducing model complexity. Additionally, CNNs 

employ a technique called dropout to mitigate over fitting issues in traditional networks. Due to 

its ability to handle a wide range of 2D shapes, CNNs find applications in various domains, 

including visual recognition, image analysis, image segmentation, and natural language processing 

[15]. Automatically detecting crucial properties without human intervention makes CNNs more 

powerful than regular networks. Numerous variations of CNNs exist in this field, including Visual 

Geometry Group (VGG) [17, 18], Xception [19], Inception [20] , ResNet [21], and many more. 
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Depending on their specific learning capabilities, these variations can be applied in diverse areas.

 

Figure 2: A Basic Structure of Convolutional neural network 

 

2.2.2. Recurrent Neural Networks 

The RNN model has gained significant popularity, especially in handling sequential data. Figure 

3 depicts the unrolled structure of an RNN [22]. This architecture utilizes a feedback loop, where 

each node remains active by receiving input from the previous node at each time step. At each 

node, the input and the previous hidden state are combined to generate the current hidden state and 

output. The diagram below provides a visual representation of a simple recurrent neural network.

 
 

Figure 3: An unrolled recurrent neural network 

 

2.3 The Proposed Predictor Model 

The proposed model utilizes a Bidirectional Recurrent Neural Network (BiRNN), widely regarded 

as one of the most effective techniques for analyzing sequential data. This technique demonstrates 

a highly accurate prediction of RNA 5hmC sites compared to previous computational models. The 

BiRNN deep learning algorithm has gained significant recognition recently due to its exceptional 

performance and versatility. It efficiently captures the crucial features of RNA sequence 
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representations without the need for manually designed features. The following section will 

provide a detailed discussion of the proposed architecture. 

 

2.3.1. Proposed BiRNN Architecture 

In this section, we present and describe the architecture of the proposed BiRNN model, as 

illustrated in Figure 1. The model builds upon the foundation of RNN by incorporating more cell 

units in their hidden states, ranging from th to nh . A bidirectional training approach is employed to 

enhance the model's performance. The architecture consists of four layers, each of which will be 

discussed in the following subsections. 

Layer 1 (RNA Nucleotide’s): The RNA sequences were fed into the Encoding Scheme before 

presented RNN models after being selected and preprocessed. 

Layer 2 (One Hot Encoding):  

The primary RNA sequences are encoded using the widely employed one-hot encoding method. 

One-hot encoding is considered the most significant, efficient, and frequently used approach for 

transforming categorical data, such as DNA and RNA sequences, into numerical form. In this 

encoding scheme, each nucleotide is represented by a binary vector. Specifically, Adenine (A) is 

represented as (1,0,0,0), Uracil (U) is represented as (0,0,0,1), Cytosine (C) is represented as 

(0,1,0,0), and Guanine (G) is represented as (0,0,1,0). Consequently, an RNA sequence of length 

n can be represented by a matrix of dimensions 4 by n, where each column corresponds to the one-

hot encoded representation of a nucleotide. This encoding method enables the efficient numerical 

representation of RNA sequences, facilitating subsequent analysis and modeling. 

Layer 3 (Bidirectional RNN): This section introduces the hidden blocks of the proposed model, 

namely BiRNN. These blocks consist of a forward track that processes the data section from left 

to right and a reverse track that analyzes the input from right to left. The following formulas can 

represent the forward recurrent sequence and the backward recurrent sequence: 

1, ,
( )t t tz h h h h

h f W X W h b−= + +            (1) 

1, ,
( )t t tz h h h h

h f W X W h b+= + +              (2) 

,
( )t t t yh h y

y W h W h b= + +                       (3) 
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, ,
( )t t t yh y h y

y W h W h b= + +                    (4) 

The formulas for the forward and backward recurrent sequences are defined as follows: 

For the forward sequence: ,( * )t p q t rh f W x b= +         (5) 

For the backward sequence: ,( * )t p q t rh f W x b= +      (6) 

In these formulas, x represents the input feature vector, h  denotes the activation vector on the 

forward (or backward) hidden layer. 
,p qW denotes the weight matrix, rb  represents the bias term, f 

represents the activation function applied to each node in the hidden layers, and y represents the 

posterior probability vector for the output label. 

 

Layer 4 (Output layer): The predicted probability of characters for each step of t in the alphabet 

is calculated using a normal sigmoid function applied to the output layer. This performance can be 

shown in the following equation: 

, ,
( )t t t yh y h y

y sigmoid W h W h b= + +         (7) 

 

2.4 Performance Evaluation 

The proposed deep learning method named iRhm5-BiRNN was evaluated using several 

classification measures to predict RNA5hmC sites, including accuracy, sensitivity, specificity, 

MCC, and F1-score. These metrics are calculated below, and a corresponding confusion matrix 

was generated [13, 23-32]. Our proposed framework demonstrates comparable performance across 

five key metrics: accuracy, sensitivity, specificity, F1-score, and Matthew's correlation coefficient 

(MCC). These metrics are defined as follows: 

TP TN
Acc

TP TN FP FN

+
=

+ + +
         (8) 

TP
Sen

TP FN
=

+
                   (9) 

TN
Spe

TN FP
=

+
                (10) 
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( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

 − 
=

+ + + +
        (11) 

1 2*
precision recall

F Score
precision recall


− =

+
          (12) 

 

The performance of the proposed model was evaluated based on the correct identification of 

positive samples (TP), correct identification of negative samples (TN), incorrect identification of 

positive samples (FP) as 5hmC sites, and incorrect identification of negative samples (FN) as non-

5hmC sites. Four metrics were used to assess the performance: sensitivity, specificity, accuracy, 

and Matthew's correlation coefficient (MCC). Accuracy, sensitivity, and specificity range from 0 

to 1, while Matthew's coefficient ranges from -1 to +1, with higher values indicating better 

performance. To visualize the diagnostic capacity of our predictor, a receiver operating 

characteristic (ROC) curve was plotted by comparing the true positive rate (1-SN) against the false 

positive rate (1-SP). The area under the ROC curve (AUC) was calculated as an effective 

performance parameter, as shown in Figure 4. 

 

 

Figure 4. The ROC analysis with of the Proposed Model. 
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In addition, we employed the 5-fold cross-validation approach to evaluate the predictor's ability to 

forecast future outcomes [33]. To measure the prediction performance of the model, we utilized 

Precision-Recall (PR) curves and Receiver Operating Characteristic (ROC) curve. The ROC curve 

compares the true positive rate (TPR; 1-specificity) with the false positive rate (FPR; 1-specificity) 

at different thresholds, while the precision-recall curve plots precision (the proportion of real 

positives out of all predicted positives) against recall (sensitivity) at various thresholds. The PR 

curve is more sensitive and responsive to false positives compared to the ROC curve, which is 

particularly valuable when dealing with imbalanced sample sizes. Furthermore, the area under the 

curve (AUC) of the receiver operating characteristic is an objective measure of the prediction 

model's quality and is influenced by the number of observations. The AUC ranges from 0.5 to 1, 

with higher values indicating better prediction accuracy [34]. Finally, the confusion matrix 

provides a visual representation of the model's performance and is displayed to facilitate the 

evaluation. 

 

3. RESULTS AND DISCUSSION 

3.1. Performance Comparison using Different Deep Learning Classifier 

In this experiment, we compared three different internal structures: CNN, RNN, and bidirectional 

RNN, to determine the best-performing model with higher metrics. The final architecture was 

selected after evaluating the performance of each model and adding a dropout layer. We utilized 

Benchmark datasets to assess the superiority of CNN, RNN, and bidirectional RNN. Table 1 

presents the prediction accuracy achieved by each architecture. Among CNN, RNN, and BiRNN, 

accuracies of 84.94%, 82.67%, and 85.51% were obtained, respectively. BiRNN achieved the 

highest accuracy of 85.51% as shown in Table 1. Additionally, when considering the other five 

evaluation metrics, BiRNN demonstrated superior performance. BiRNN is considered more 

complex and faster than the other two architectures, enabling it to capture more features. Figure 6 

and Table 1 indicate that the accuracies of CNN and RNN are significantly lower than that of 

BiRNN. Thus, based on our benchmark dataset, it is evident that BiRNN outperforms other 

classifiers in effectiveness. Figure 6 provides a graphical representation of various methods for 

predicting RNA 5hmC sites, and Table 1 summarizes the findings of RNA sequences using 

different models. To encode the sequences, we proposed a feature-based technique. The results 
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show an accuracy of 85.51%, sensitivity of 82.38%, specificity of 88.63%, MCC of 0.71, and F1-

score of 85.04%. 

 

3.2. Nucleotide Properties of Chemical for Sequence Encoding  

RNA is composed of four nucleic acids: adenine (A), cytosine (C), guanine (G), and uracil (U), 

each having its distinct chemical properties [35, 36]. These chemical features of the nucleotides 

can be categorized into three classes: hydrogen bond strength, base type, and functional group 

(keto or amino) [37]. The basic structure of RNA nucleotides is illustrated in Figure 5. 

 

Figure 5: shows the RNA Nucleotide Structure 

 

The RNA nucleotides consist of two purines, A and G, each containing two rings and C and U, 

which have a single-ring structure [37]. A weak association exists between A and U, while C and 

G have a strong relationship. A and C belong to the amino group, while G and U belong to the 

keto group. These three chemical conditions allow for the mapping of RNA nucleotides to three-

dimensional Cartesian coordinates. Each coordinate is assigned a binary value of either 0 or 1. A 

value of 1 represents a purine or pyrimidine, while all other values are represented by 0 or 1. A 

weak hydrogen bond is represented by a value of 1, while a strong one is represented by 0. The 

amino group is denoted by a 1, whereas the keto group is denoted by a 0. Accordingly, A and G 

are represented as 1, C as 0, U as 1, and G as 1. 
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Figure 6. A graphical representation of various methods for predicting RNA 5hmC sites 

 

 

Figure 7.  The proposed model confusion matrix. 
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TABLE 1. Result of different comparison of BiRNN with Simple RNN and CNN using different Model architectures 

  

Methods Acc (%) Sn (%) Sp (%) MCC F1-Score (%) 

BiRNN 85.51 82.38 88.68 0.71 85.04 

RNN 82.67 85.39 79.88 0.65 83.28 

CNN 84.94 84.48 85.39 0.69 84.72 

 

 

Figure 8. A graphical representation of Predicting RNA 5hmC sites comparison of the existing models 

 

TABLE 2. A comparison of the proposed iRhm5BiRNN model's performance against the existing computational 

model. 
 

Methods Acc Sn Sp MCC 

iRhm5BiRNN 0.85 0.82 0.88 0.71 

iRhm5CNN 0.81 0.82 0.80 0.62 

iRNA5hmC 0.65 0.68 0.63 0.31 

 

3.3. Performance comparison of the proposed model with existing methods 

In this section, we compared the outcomes of the proposed model with those of existing deep 

learning and machine learning-based computational models that were available. We conducted a 

comparative analysis using 5-fold cross-validation to assess the performance of two models on the 

same dataset: iRNA5hmC [12], and iRhmCNN [13]. Each model was fine-tuned individually to 

achieve optimal performance, and the results are presented in Table 2. The iRhm5BiRNN model 
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outperforms the other classifiers in all four metrics, with an accuracy (ACC) of 85.51%, sensitivity 

(SN) of 82.38%, specificity (SP) of 88.63%, and Matthew's correlation coefficient (MCC) of 0.71. 

Furthermore, we employed ROC curve to compare the performance of different classifiers, as 

depicted in Figure 4, respectively. These results highlight the superior discriminative power of the 

iRhm5BiRNN model in distinguishing between 5hmC and non-5hmC sites. Our model 

demonstrates significantly improved performance when comparing our proposed technique to 

iRhm5CNN [12] and iRNA5hmC [13]. As shown in Table 2 and Figure 8, our proposed model 

outperforms the benchmark dataset in all performance parameters, with notable improvements of 

4% accuracy, 8% specificity, and a 7% increase in MCC. These results indicate that iRhm5-

BiRNN surpasses the existing methods and delivers superior performance across all four measures. 

 

4. CONCLUSION 

The identification of RNA 5hmC sites is of significant importance in various studies. In this study, 

we proposed a computational predictor, iRhm5BiRNN, which utilizes deep learning techniques to 

identify RNA 5hmC sites. Based on Bidirectional Recurrent Neural Networks (BRNN), our 

approach does not rely on prior knowledge or experimental information. Accurately identifying 

RNA 5hmC sites is crucial for exploring their diverse and yet unknown biological functions. Our 

proposed model, iRhm5BiRNN, leverages a straightforward BiRNN architecture to extract 

relevant features for distinguishing between RNA 5hmC and non-5hmC sites. We also conducted 

a study to determine the optimal hyper-parameters for BiRNN models, including the choice of the 

optimizer. The findings revealed that selecting the best hyper-parameters leads to superior results. 

Compared to previous models, our proposed model achieved a classification accuracy of 85.56%. 

The iRhm5-BiRNN model outperformed other state-of-the-art techniques across all evaluation 

metrics. Consequently, our proposed iRhm5BiRNN model demonstrates a more robust predictive 

capability for RNA 5hmC sites, making it a valuable tool for more accurate clinical decisions. In 

the future, we aim to evaluate the effectiveness of our approach in identifying other RNA 

modification sites. This ongoing investigation will contribute to further advancements in RNA 

modification detection. 
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