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Abstract 

 Analysis of genomic variations using DNA sequencing technologies has imparted 

significance to crop genetics and breeding. In the present study, a photo sensitive genic male sterile 

(PGMS) line of a Japonica rice has been sequenced by Genotyping by Sequencing (GBS) method 

of next generation sequencing (NGS) for detecting genome wide single nucleotide polymorphisms 

(SNPs). The optimized protocol of GBS revealed 57.2% of uniquely mapped short reads onto the 

Nipponbare reference rice genome. The uniquely mapped reads of 200bp were further imputed in 

TASSAL-GBS software for identification of total 1894 genome-wide SNPs. The identified SNPs 

within the PGMS genome was scattered unevenly across and within the 12 chromosomes of rice. 

The annotation of identified SNPs confirmed the presence of 963 SNPs within the intragenic 

spaces along with 140 and 765 SNPs in the intron and exon regions, respectively. Also, the 

presence of 498 non-synonymous SNPs in the sequenced genome inferred significance for future 

breeding applications. The outcome of our study implied that 1004S could be elite breeding 

germplasm for enhancing the genetic diversity of two-line hybrid rice system. Moreover, the 

identified SNPs concluded to be potential resource for molecular breeding and genome-wide 

variations on hybrid performance. 
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1. Introduction 

Mining of genetic diversities in crop genomes has a broad spectrum of applications in 

breeding experiments. Genetic diversity through molecular markers has a remarkable insight to 

the processing, propagation and elucidation of genetic information. Contribution of molecular 

markers in plant breeding has vast range of genetic resource conversation and their proper 

management (Zeid 2003; Bertini et al. 2006; Perseguini et al. 2011; Skuza et al. 2013; Dao et al. 

2014; Kumbhar et al. 2015). Molecular markers provide an efficient genetic platform for accurate 

assessment and characterizations of genetic resources of crop germplasm. Plant breeders use 

molecular markers to screen the genetic basis of germplasm and manipulate their genetic 

diversities at locus/gene level to provide useful information of quantity and distribution of genetic 

diversity within and among breeding populations (Mondini et al. 2009).  

The concept of molecular markers in plant breeding has been used since ages; it offered 

significance over phenotypic observations. Tagging alleles and genes authorizing quantitative 

traits is the optimum usage of molecular markers (Wu and Tanksley 1993; Rahman et al. 2008, Fu 

et al. 2010; Khaled et al. 2015; Qin et al. 2015). Also, it extended the significance in locating 

disease resistance locus in many plant species (Michelmore et al. 1991; Borovkova et al. 1995; 

Michelmore 1995; Huang et al. 1997; Ragimekula et al. 2013; Ashkani et al. 2015). However, 

these electrophoretically separated DNA markers distinguish the genetic polymorphisms in a 

breeding population and consumed several months of genotyping. For genome-wide scanning of 

large breeding population in small period of time with low cost and more efficient and reliable for 

exploiting the genomic variations. NGS is the most efficient and time saving method for scanning 

a breeding population and exploiting genetic polymorphism, with low cost and high throughput 

genotyping. 

NGS is the phenomenal invention soaring the magnificent horizon of genome-wide DNA 

polymorphisms (Nielsen et al. 2011; Kumar et al. 2012; Trick et al. 2012). With the advent of 

NGS technology, multiple genomes (animals and plants) have been sequenced for marker 

identifications, such as for SNPs, insertion and deletions (InDels) (Feltus et al. 2004; Van Tassell 

et al. 2008; Wiedmann et al. 2008; Amaral et al. 2011; Subbaiyan et al. 2012; Huang et al. 2013; 

Kim et al. 2014). In plants, SNP identification is usually facilitated by NGS. SNPs are the single 

base pair change in plants DNA which are distributed randomly genome-wide (McCouch et al. 
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2010). SNPs gained tremendous importance as a third generation DNA-based molecular markers 

that were widely practiced in molecular breeding experiments. Currently, extensively being 

exploited in multiple analysis, which includes association analysis, population polymorphism, 

marker assisted breeding, QTL analysis, positional cloning, pedigree haplotype and for variety 

discriminations studies (Rafalski 2002; Elshire et al. 2011; You et al. 2011). In rice, SNPs have 

been investigated among indica, Japonica species and of their wild type also (Monna et al. 2006; 

Nagasaki et al. 2010; Arai-Kichise et al. 2011; Thomson et al. 2012; Kim and Tai 2013; Jain et al. 

2014; Takano et al. 2014; Tang et al. 2016). Likewise, after complete genome sequence of the rice 

genome (Project 2005), it  initiated a revolutionary sequencing platform for SNPs discovery at the 

genome-wide scale. Very recently, 2495052 and 660778 of SNPs were detected by whole genome 

sequencing between the indica and japonica parents of hybrid rice, respectively (Subbaiyan et al. 

2012; Hu et al. 2014). Similarly, 132462 of SNPs were screened out through protocol of whole 

genome sequencing in a landrace omachi belongs to japonica rice (Arai-Kichise et al. 2011). 

 Hybrid rice research originated in China and successfully attained appreciable production 

scale, promoting 20% more grain yield compared to indica and japonica inbred lines (Cao and 

Zhan, 2014). Chinese breeders enabled large-scale cultivation of hybrid rice through adapting the 

three-line and two-line hybrid rice breeding schemes. The requisites for three line scheme 

comprised of cytoplasmic-genetic male sterile line (A line), a maintainer line (B line) and a restore 

line (R line). The two lines hybrid rice breeding system were evaluated in China in 1985 (Shi 

1985). The two line hybrid rice breeding scheme was established on a restorer line and a 

photoperiod genic male sterility (PGMS) having a recessive gene and strongly influenced by 

temperature or light. During the past 20 years, international rice research institute (IRRI) and China 

have developed several PGMS and restorer lines of two line breeding system. Since then 

considerable work has been done to exploit the genetic diversity of mating parents of two line 

breeding systems. Previous breeding practices reported that parental combinations of two-line 

hybrid rice provided limited genetic diversity. Therefore, efforts are needed to analyze and expand 

the genetic diversity of parents of two-line hybrid rice. 

 The japonica PGMS line (1004S) was developed in Jiangsu Academy of Agricultural 

Sciences, Nanjing, China. As a pollen receiving parent in two-line hybrid rice breeding system, it 

showed potential in the development of two-line rice hybrid. Also, it has challengeable high 

fertility and strong adaptation toward several biotic and abiotic stresses. The F1 derived from 

http://www.baidu.com/link?url=eRVf7JjDlRs6Qy6pFtvVEVk6PPueOPS_dauNxHGoXGN5xv2tp6jPANIP-1tpDbGB8lh64NbJ_Qq03KovR2EzhGbwEKm-cKsUGDvxD1FZLZIJFIEsQ5m-rF9fERbDmXKV&wd=&eqid=d03b2f410008214c0000000559073cac
http://www.baidu.com/link?url=eRVf7JjDlRs6Qy6pFtvVEVk6PPueOPS_dauNxHGoXGN5xv2tp6jPANIP-1tpDbGB8lh64NbJ_Qq03KovR2EzhGbwEKm-cKsUGDvxD1FZLZIJFIEsQ5m-rF9fERbDmXKV&wd=&eqid=d03b2f410008214c0000000559073cac
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1004S had high grain yield with resistance against stripe disease (stv). The present experiment was 

carried out to sequence the 1004S using NGS-based GBS method for discovery of genome-wide 

SNPs. We expect that the results of our experiment will provide an assessment of GBS protocol 

for exploiting genetic diversities in parents of two-line hybrid rice. 

2. Material and Methods 

2.1. DNA extraction and library construction 

 In order to construct a high-quality genomic library for sequencing, young leaves of 1004S 

were selected and total genomic DNA was isolated with DNA secure plant kit (Tiangen biotech, 

Beijing, China) under recommended protocol (Lu et al. 2016). This kit is specialized, based on 

silica membrane technology containing a set of unique buffers to eliminate impurities.   

The isolated DNA yield was assessed for purity and concentration by three different methods 

including, agarose gel electrophoresis, spectrophotometer test (Nano Drop 2000) and Qubit 2.0 

Fluorometer. After purification, approximately 50µL of DNA was selected to construct DNA 

library following the standard protocol of genotyping by sequencing method (Poland et al. 2012). 

 The genomic library of 200 bp was constructed by digesting DNA with two restriction 

enzymes, followed by a ligation reaction. A set of the developed adapter was used for the ligation 

reaction. At last, a polymerase chain reaction (PCR) was performed to build the GBS library. The 

experiment of NGS was performed with Ion Torrent machine using Ion Torrent kits (200 Kit v2) 

under the manufacturer specifications (Life Technologies, Carlsbad, CA, U.S.A). After sequencing 

The FASTQ raw DNA sequence data file was submitted to NCBI short read archive (SRA) under 

the study accession number: SRR2758809. 

2.2. Read mapping and SNP calling 

 To minimize the sequencing errors, all the short reads were trimmed by applying screening 

steps. All the obtained reads of 1004S were aligned against reference Nippon bare genome 

(http://rice.plantbiology.msu.edu/) using Bowtie 2 software with default parameters (Langmead 

2010). The mapped short reads were further classified into categories of uniqueness, multi-location 

and unmapped reads. Only certain reads mapped uniquely onto reference were considered for 

genome-wide SNP calling. The Tassel application of GBS pipeline was used to call genome-wide 

SNPs (Glaubitz et al. 2014). SNP distribution across and within chromosomes was also analyzed.  

 

http://rice.plantbiology.msu.edu/
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2.3. In-depth annotations   

 The annotation of SNPs provides the necessary information about SNP location in the 

sequenced genome. To identify the SNPs within the coding or non-coding region, the information 

of reference genome was tracked and annotated accordingly. SNPs in genic regions were divided 

into coding sequence, un-translated regions, and intron variants. The SNPEff (4.2) software was 

used to annotate and further classify SNPs into synonymous and non-synonymous amino acid 

substitutions (Cingolani et al. 2012). 

3. Results and Discussion 

3.1. Short read mapping 

 After de-multiplexing of attached barcodes and removal of undesired sequences, the 

sequenced file was then evaluated through FastQC software. The short reads of 1004S genome 

were mapped via the Bowtie algorithm. The 200-bp long single-end reads were mapped against 

the Nippon bare genome. The mapping results retrieved a total of 496610 high-quality short reads. 

Among them, 57.2% aligned exactly once and 26.8% aligned more than one time onto the 12 

chromosomes of Nipponbare genome (Figure 1). The successfully mapped short repeats against 

the reference genome contributed to the genome wide SNP discovery (Nielsen et al. 2011). Nearly 

84% of alignment rate was recorded. About, 16% of the reads remained unmapped against the 

reference genome. The genomic deletions/duplications in the process of sequencing experiment 

are the most probable factors for the un-mapped short repeats (Arai-Kichise et al. 2011). 

Figure 1. Mapping of short reads onto Nipponbare reference genome. 
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3.2. SNP detection and distributions 

The recent discovery of molecular markers such as SNPs, insertions, and deletions through 

NGS-based GBS method proved to be exclusive and time saving (Elshire et al. 2011; Poland et al. 

2012; İpek et al. 2016). The GBS protocol was applied to many crop species for genome-wide 

variants discovery. The main features of GBS assay include its low cost, few quality and standard 

checks, efficient bar-coding system, reliable sequencing of the large-scale genome and multiplexed 

genotyping (Davey et al. 2011). Within the mapped sequenced reads of 1004S japonica PGMS 

line, a total of 1894 SNPs were identified across 12 chromosomes of rice (Table 1). The SNPs in 

the sequenced line were identified by individual comparison with the Nippon bare reference 

genome. The mapped file obtained from bowtie software was submitted in Tassal-GBS application 

for genome-wide SNPs discovery. The discovered SNPs in the PGMS line were distributed non-

randomly over the 12 chromosomes of rice. The maximum number of 547 SNPs was found on 

chromosome 2, while minimum number (37) of SNPs was located on chromosome 4. The 12 

chromosome of rice revealed an average of 157 SNPs. Our findings of low polymorphisms in 

japonica based PGMS line clearly exhibited the limited diversity and narrow genetic background. 

(Yang et al. 1994; Garris et al. 2005).  

Table 1. SNPs observed in 1004S in comparison with Nipponbare reference genome. 

Chromosome  Length (MB) SNPs  SNP rate  

1 43,270,923 211 152,362 

2 35,937,250 547 192,177 

3 36,413,819 119 316,641 

4 35,502,694 37 163,606 

5 29,958,434 55 475,530 

6 31,248,787 137 201,605 

7 29,697,621 70 204,811 

8 28,443,022 64 160,695 

9 23,012,720 73 511,393 

10 23,207,287 87 164,590 

11 29,021,106 387 90,975 

12 27,531,856 107 199,506 

Total 373,245,519 1,894 187,938 
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3.3. Annotation of identified SNPs 

 The annotation of Nipponbare rice was used as a reference to confirm the genomic 

distributions of identified SNPs of 1004S within the various genomic locations. Among the 

identified 1894 SNPs, the majority 963 (50.8%) of SNPs was detected within the intragenic region 

of the genome (Figure 2). Previous studies endorsed the similar results regarding the SNP 

distribution within the intragenic regions (Subbaiyan et al. 2012; Hu et al. 2014; Srivastava et al. 

2014). Altogether, 140 (7.3%) and 765 (40.3%) of SNPs were found in the intron and exon regions, 

respectively. The SNP effect on amino acid substitutions was also analyzed by classification of 

identified SNPs as synonymous and non-synonymous. The SNPs in the coding region as 

synonymous nature was counted as 246 (12.9%), while the non-synonymous nature was further 

divided into missense, 495 (26.1%), and nonsense, 3 (0.1%). The SNPs with non-synonymous 

nature pertains biological importance that can affect the proteins of different genes (Ng and 

Henikoff 2006; Kumar et al. 2009; Sauna and Kimchi-Sarfaty 2011). Therefore, the presence of 

non-synonymous SNPs within sequenced genome provides valuable insights for understanding the 

performance of lines. The 3´-UTR and 5´-UTR regions possessed 121 (6.3%) and 127 (6.7%) of 

SNPs, whereas, the remaining 7 (0.3%) SNPs were situated inside the splice region of genomes of 

the 1004S PGMS line. 

Figure 2. Annotation of identified SNPs. 

 
1;Intergenic,2;Splice stites,3;intron 4; 3´-UTR,5; 5´-UTR, 6; exon, 7; Synonymous, 8; Missense, 9; Nonsense. 
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4. Conclusion 

 The identified SNPs in the present study in addition to already available SNP assets imparts 

substantial significance in breeding and provide valuable resources for future genomic studies, 

molecular-assisted breeding lines, QTL mapping, haplotype construction, association studies and 

pedigree analysis. In conclusion, this study identified that SNPs showing high level of genetic 

diversity based on genome-wide sequencing in PGMS line. The results deduced that discovered 

SNPs in this study will helpful for exploiting genetic diversity of parents of hybrid rice. 
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