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Abstract- Ground state energies of various lighter atoms and few 

heavy atoms are calculated using Hartree-Fock method’s several 

variants. Obtained results were compared with previous 

theoretical and numerical computations for the ground state 

energies of investigated atoms. It is found upon comparison that 

the energy differences are lying between 15μ Hartree to 0.35 

Hartree for RHF, UHF, ROHF methods (non-relativistic) while 

79μ Hartree to 252 Hartree for DHF method. Furthermore, 

differences of DHF energies and NIST data are also calculated 

and are found in range 15μ Hartree to 10.6 Hartree. The results 

suggested that Hartree-Fock method with its underlying 

approximation is suitable in estimating ground state energies and 

relativistic effects turn out to be important in case of heavier 

atoms. 

 

Index Terms- Correlation effects, Hartree-Fock method, open 

and closed shell systems, Self-consistent fields.  

I. INTRODUCTION 

he foundation of the Hartree-Fock theory was put forward in 

1927, just after the discovery of the Schrodinger equation in 

1926. DR Hartree introduced a mathematical technique, now 

called the self-consistent field method (SCF), to compute 

approximate wave functions and energies for atoms, molecules 

and ions [1]. These are called ab initio methods and use the 

Schrodinger equation to solve the many-body problem. The 

solution of the Schrodinger equation provides energy and wave 

function which describe the state of the system. In 1928 J.A. 

Gaunt and J.C. Slater [2] suggested that Hartree-Fock method 

can be more effective, if variational principle is applied to an 

ansatz as a product of single-particle function. V. A. Fock [3] and 

Slater independently noticed that the wavefunction for fermions 

used by Hartree was not anti-symmetric which was an essential 

condition for identical particles. Later on, in 1935 Hartree 

modified his method which fulfils the condition of anti-symmetry 

and now known as Hartree-Fock method (HF). HF method is an 

effective tool which can be used to calculate the ionization 

energies, excitation energies, electron expectation values, bond 

energies and distances of molecules. Further pioneering work 

presented by Sambe and Felton and Heijsen et al in [4-6]. 

Although the method is very useful for the estimation of ground 

state energies of atoms but it does not incorporate the correlation 

effects that arises due to electron-electron interaction. Correlation 

energies also contribute to the total energy and neglecting these 

terms specially for the case of heavy atoms would affects the 

energy accuracy. There are other methods that provide better 

energy accuracy than Hartee-Fock method but required more 

computational cost. Few of them are; variational method, 

perturbative method density functional theory and related work 

can be found in [7-10]. In 2009, Hylleraas algorithm was used by 

Koki to calculate the ground state energy of helium atom [11]. In 

order to obtain more and more accurate ground state energies, 

another very efficient method has been in use now days, known 

as Quantum Monte-Carlo method. In 2010, the method was used 

by Doma and El-Gamal to estimate ground state energy of 

helium [12]. Using two basis sets along with density functional 

theory (DFT), Feng Wang et al 2012 calculated the 

wavefunctions of bound electrons. They included the electron 

correlation energies in their model. Quantum Monte-Carlo 

CASINO-Code have been used for computing the exact ground 

state or low-lying state conditions for two-electron atoms and 

found more suitable for the purpose. These methods are 

comparatively less complex than perturbative methods and are 

quite easy to use [13].  
 

II. MATERIAL AND METHODS 

 

1. Hartree-Fock Method 

The Hartree-Fock (HF) method is widely used in quantum 

chemistry for approximate electronic structure calculations. The 

HF method is a mathematical framework used to find out the 

wavefunction and energy of a multi-electron system in a ground 

state. The equation of motion cannot be solved analytically for 

systems in which two or more than two particles interact with 

each other because an analytical solution for the Schrodinger 

equation exists only for a single electron atom. The problem that 

quantum mechanics is facing in dealing with the interacting 

electrons is related to their indistinguishable nature. A single 

Slater determinant can describe the state of the electrons and 

energy can be minimized by varying single-electron orbitals. The 

solution of the variationally obtained N-spin orbitals that are 

coupled together would provide HF wavefunction and energy of 

multi-electron system. 

  

To derive the HF equation, a self-consistent final field is 

required, which is calculated from the charge distribution with 

the assumed field. Because of this; the HF method is also known 
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as self-consistent field method (SCF). Hartree-Fock method is 

more often used to derive the solution of Schrodinger equation 

for atoms, molecules, nanostructures and solids.  

For methods that describe the many-electron system for atoms 

and molecules more precisely, the HF solution is the crucial 

starting point for them. 

There are some special cases of HF method:  

 The restricted closed shell Hartree-Fock method (RHF), 

where atom is a system in which all orbitals are doubly 

occupied.  

 The restricted open shell Hartree-Fock method (ROHF), 

where some of the electrons are not paired.  

 Unrestricted Hartree-Fock method (UHF), where 

electrons can occupy any shell irrespective of Aufbau 

principle.   

 Relativistic Hartree-Fock method or Dirac Hartree-Fock 

method (DHF), where relativistic effects are taken into 

account.   

 

The Hartree-Fock method is a variational wavefunction based 

approach that relies on independent particle approximation. The 

model gives the final wavefunction without including correlation 

effects in it. The resulting wavefunction given by the model is 

assumed to be the best wavefunction within the independent 

particle approximation. In the case of many-electron atoms, the 

Coulomb repulsion between electrons plays a crucial role in 

changing the coulomb nuclear potential through shielding. Thus, 

by modifying the coulomb potential appropriately, large coulomb 

repulsion effects can be added remains within the domain of 

single-particle state.  

The wavefunction and the Hamiltonian for n electron systems in 

HF approximation are expressed as 
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1
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After the application of Born-Oppenheimer approximation, the 

Schrödinger equation for atoms can be written as 
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Hartree-Fock method is classified into open and closed shell 

systems based on system’s atomic configuration. Moreover, open 

shell system can be dealt with by one of two Hartree-Fock 

method, restricted (ROHF) and unrestricted (UHF) method. 

Correspondingly, restricted Hartree-Fock deals closed shell 

systems. In case of heavy atoms, the relativistic effects are 

included using relativistic Hartree-Fock method. 

 

 

 

 

1.1. Restricted Hartree-Fock (RHF) or closed-shell systems 

A SCF method for an atom is devised in manner that it gives a 

single determinant of one-electron functions. The variation in 

average energy is taken place regarding quantum numbers n, l, s, 

ml, and ms, but only those orbitals are varied independently that 

have unlike n and l labels. This is called RHF method. The 

method is restricted in a way that the radial dependence is same 

for those orbitals that have similar n and l values but different ml 

and ms values [14]. This method is usually adopted for closed 

shell atoms but could be used for open shell atoms as well. One 

of the examples for restricted open-shell Hartree-Fock theory 

(ROHF) is given in [15], although open-shell calculations have 

been a case of UHF type. It is more convenient to use ROHF 

method than UHF because UHF method is suitable only for 

specified open-shell orbitals having state of maximum 

multiplicity. Only for this case UHF wavefunction can estimate 

an appropriate spin eigen-function while those states which have 

smaller multiplicity are spoiled due to unnecessary spin 

components.  

In a closed-shell treatment, each orbital is doubly occupied and 

wavefunction is a single Slater determinant based on an anti-

symmetrized product of single-electron orbitals. The Hartree-

Fock equations can be obtained through Variation method for a 

closed-shell atomic system. 

Ψ = (𝜑1𝛼)(𝜑1𝛽) … … … (𝜑𝑛𝛼)(𝜑𝑛𝛽) 
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When wavefunction Ψ is expressed in terms of a single Slater 

determinant in which each spatial orbital is doubly occupied then 

energy expectation value can be written as 

 ⟨Ψ|�̂�|Ψ⟩ = ∫ ⋯ ⋯ ∫ Ψ∗𝐻Ψ𝑑𝜏1 ⋯ ⋯ 𝑑𝜏2𝑛                             (5) 

If eq. (2) is used in eq. (5) then sum of integrals over the orbitals 

results the expectation value 

 ⟨Ψ|�̂�|Ψ⟩ = 2 ∑ 𝐻𝑖𝑖 + ∑ ∑ (2𝐽𝑖𝑗𝑗 − 𝐾𝑖𝑗)𝑖 = 𝐸              (6) 

The factors of 2 in eq. (6) appear in dealing with a closed-shell 

system having 2n electrons, n electron have spin up and 

remaining n have spin down and 
1

√2𝑛!
 in eq. (4) is the 

normalization constant for closed-shell case. The first term on the 

right side of eq. (6) is the energy without electron-electron 

repulsion whereas 𝐽𝑖𝑗 and 𝐾𝑖𝑗  are coulomb and exchange 

integrals.   

   𝐽𝑖𝑗 = ∬ Ψ𝑖
∗(1)Ψ𝑗

∗(2)
1

𝑟12
Ψ𝑗(2)Ψ𝑖(1)𝑑𝜏1𝑑𝜏2              (7) 
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 𝐾𝑖𝑗 = ∬ Ψ𝑖
∗(1)Ψ𝑗

∗(2)
1

𝑟12
Ψ𝑖(2)Ψ𝑗(1)𝑑𝜏1𝑑𝜏2             (8) 

It is needed to find orbitals which result minimum energy. Eqs. 

(7 and 8) are the coulomb integrals which express the potential 

energy. This energy appears due to the interaction between 

electron 1 and 2 with electron distribution|Ψ𝑗(2)|
2
. The effective 

potentials are calculated via these coulomb integrals for an 

electron moving under the influence of other electrons.  

The Hartree-Fock equation is developed for those orbitals that 

result the minimum expectation value and following equation 

must be satisfied 

  𝐹Ψ = 𝜖Ψ                 (9) 

  𝐹 = 𝐻 + ∑ (2𝐽𝑖 − 𝐾𝑖𝑖 )                            (10) 

where F is the Hartree-Fock Hamiltonian and 𝜖 is a Hermitian 

matrix of Lagrangian multipliers, which appear accompany by 

orthonormality restrictions. Hamiltonian operator F with respect 

to the set of orbitals Ψ is established in a manner that, it remains 

consistent after Ψ experiences a transformation. Therefore, the 

set , Ψ′ fulfills 

 𝐹𝛹′ = 𝜖′𝛹′               (11) 

 𝜖′ = 𝑈∗𝜖𝑈               (12) 

Consequently, Ψ is selected such that 𝜖 becomes diagonal, thus 

all the orbitals satisfy 

 𝐹Ψ𝑖 = 𝜖𝑖Ψ𝑖               (13) 

Eq. (13) is a pseudo-eigenvalue problem, and F is an operator 

described through the solution of eq. (13). The above equation is 

known as Hartree-Fock equation. The sum of one-electron 

integrals, 𝐻𝑖  and orbital energies, Ψ𝑖, gives the system’s total 

energy. 

 𝐸 = ∑ (𝐻𝑖 + 𝜖𝑖𝑖 )               (14) 

Where−𝜖𝑖 is the orbital energy almost equivalent to the 

ionization energy needed to eliminate an electron occupying in 

𝛹𝑖 , which is a real explanation of orbital energies.   

The resulting final field of given charge distribution must be self-

consistent with the assumed initial field and that’s why the 

method is known as SCF method.  

1.2. Unrestricted Hartree-Fock (UHF) or open-shell systems 

The orbitals that have similar n, l, ml values but different ms 

values, the equation of orbitals varies with respect to ms values. 

This is termed UHF method and it is recommended to reader to 

see [14, 16] for further understanding. The open shell analysis is 

somewhat different from closed shell. The wavefunctions for 

open-shell possess the following specifications: 

The total wavefunction resulting from the sum of all anti-

symmetric products, that contain a closed-shell core Ψ𝑐, and a 

partially filled open shell chosen from a set Ψ0. The complete set 

of orbitals Ψ is described by 

 Ψ = (Ψ𝑐 , Ψ0)               (15)      

and assumed to be orthonormal, such that the two sets Ψ𝑐 and Ψ0 

are orthonormal and mutually orthogonal. The expression for the 

total energy can be written as 

𝐸 = 2 ∑ 𝐻𝑘 + ∑ (2𝐽𝑘𝑙 − 𝐾𝑘𝑙)𝑘 +𝑘 𝑓[2 ∑ 𝐻𝑚𝑚 + 𝑓 ∑ (2𝑎𝐽𝑚𝑛𝑚𝑛 −
         𝑏𝐾𝑚𝑛) + 2 ∑ (2𝐽𝑘𝑚 − 𝐾𝑘𝑚)𝑘𝑚 ]            (16) 

where a, b and f are numerical constants. The first and second 

term serve as closed shell energy, the last term is the sum of open 

shell energy and the interaction energy of closed and open shell. 

Where f is a fractional occupation number of the open-shell, 

which is calculated by taking the ratio of number of occupied 

open-shell spin orbitals to the number of available open-shell 

spin orbitals; 0<f<1. By using the same technique described 

above the full coulomb operator and exchange operator can be 

found for closed shell systems [17]. 

1.3. Dirac Hartree-Fock method 

In order to calculate ground state energies and wavefunction of 

simple atoms non-relativistic methods are efficient but cannot be 

used for complex atoms. If spin orbit interactions and Darwin 

terms are included to Hamiltonian as small perturbations, then 

these methods can be extended for complex systems. 

For heavier atoms these terms cannot be treated as small 

perturbations because relativistic effects are in greater magnitude 

and Dirac’s relativistic Hamiltonian structure is appropriate for 

this purpose [18, 19]. 

Dirac Hamiltonian for an electron is, 

𝑯 = 𝑖𝑐𝜶 ∙ ∇ − 𝛽𝑐2 − 𝑽(𝒓)               (17)  

Ψ = (

𝑖

𝑟
𝜒−𝑘,𝑚𝑄(𝑟)

1

𝑟
𝜒𝑘,𝑚𝑃(𝑟)

)                (18) 

 𝜒𝑘,𝑚 = ∑ 𝐶(𝑙1

2

𝑗: 𝑚 − 𝑠, 𝑠)𝑌𝑙
𝑚−𝑠𝜙1

2

𝑠
𝑠=±

1

2

              (19) 

Here, 𝜒𝑘,𝑚 and 𝜙1

2

𝑠 are the angular and spin parts of the spinor, C 

denotes Clebsch-Gordan coefficients and 𝑌𝑙
𝑚−𝑠 are spherical 

harmonics. The Dirac equations for a single electron atom can be 

obtained by minimizing the expectation value of Hamiltonian. 

Hence two equations for orbitals obtain, 

 
𝑑𝑃

𝑑𝑟
+

𝑘

𝑟
𝑃 + (2𝑐 +

𝑉−𝜀

𝑐
) 𝑄 = 0               (20) 

 
𝑑𝑄

𝑑𝑟
−

𝑘

𝑟
𝑄 − (

𝑉−𝜀

𝑐
) 𝑃 = 0                             (21) 
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where V represents the one electron potential and 𝜀 results from 

setting undetermined multiplier λ equals to −𝑐2 + 𝜀. For a many 

electrons system, Grant has been used the following Hamiltonian 

𝐻 = ∑ [𝑖𝑐𝛼(𝑘)𝑐2 −
𝑍

𝑟
]𝑘 + ∑(𝑝𝑎𝑖𝑟𝑠 𝑘, 𝑛)𝑔(𝑘, 𝑛)            (22) 

where k runs over all electrons and g(k, n) represents two 

electron operator. Using the Racah’s tensor operator method 

Grant wrote the following energy expression 

𝐸𝑇 = ∑ 𝑁𝐴𝐼(𝐴) +𝐴 ∑ [𝑁𝐴(𝑁𝐴 − 1)/2]𝐴 × {𝐹0(𝐴, 𝐴) −

           ∑ [(2𝑗𝐴 + 1)/(4𝑗𝐴)Γ𝑗𝐴𝑘𝑗𝐴
∙   𝐹𝑘(𝐴, 𝐴)]𝑘>0 } +

           ∑(𝐴𝐵 𝑝𝑎𝑖𝑟𝑠)𝑁𝐴𝑁𝐵 × {𝐹0(𝐴, 𝐵) − ∑ (
1

2
)𝑘 Γ𝑗𝐴𝑘𝑗𝐵

𝐺𝑘(𝐴, 𝐵)}

                                                                       (23) 

Where 𝐹𝑘 and 𝐺𝑘 are Slater integrals which represents the 

contribution to the total energy due to electrostatic interaction 

between A and B pair of electrons. A detail mathematical 

treatment can be seen from [20]. 

III. RESULTS AND DISCUSSION 

The energies for Z= 1-23 and for charge numbers 37, 38, 55, 56 

are calculated from RHF, UHF, ROHF and DHF method and 

computed results are summarized in Table.1. For atoms (H-Ne) 

ano-rcc basis functions are used, and ccpvdz for (Na-Ar), aug-pc-

4 for (K), ccpvtz for (Ca), aug-cc-pvdz for (Sc), adzp for (Ti, V), 

dzp for (Rb, Sr), ugbs for (Cs, Ba) as an initial guess for the true 

Hartree-Fock calculation. Further description of these basis is 

given in Table.2. The computations are accomplished through a 

python code in company with python package PySCF and this is 

done on Linux system. More often, energies of molecules are 

calculated using python package PySCF but here atomic 

calculations are performed by the help of this package. All 

energies are measured in Hartree and are compared with existing 

[21, 22] calculated values and NIST [23] data. The difference of 

energies of all above mentioned methods from NIST data and 

Bunge are found for all aforementioned atoms. It is observed in 

Table.3 that the energy differences resulting from DHF method 

are much smaller than other methods, meaning that energies 

obtained from DHF method are in good agreement with NIST 

data. As, discussed in section1, the relativistic effects are 

important for atoms that have atomic number greater than 30 and 

must be taken into account in the wavefunctions. The RHF, 

ROHF and UHF methods do not account for relativistic effects 

and treat inter-electronic interactions in an average manner thus 

the energy differences for Rb, Sr, Cs and Ba atoms are 

considerably larger than from DHF.  

 

 

Table.1. Ground state energies of Atoms Z=1-23, 37, 38, 55, 56 in Hartree 

Elements 
Present results 

Bunge 1993 NIST 
RHF ROHF UHF DHF 

H 0.49(12) 0.499983742 0.499983742 0.499990378 N/A 0.49973329 

He 2.861626(60) 2.861626(60) 2.861626(60) 2.8617(20) 2.861679993 2.90338609 

Li 7.432(32) 7.432(40) 7.432(33) 7.433(30) 7.432726924 7.47797942 

Be 14.5728(34) 14.5728(23) 14.5728(23) 14.575(22) 14.57302313 14.66844319 

B 24.52(70) 24.52(70) 24.53(71) 24.54(70) 24.52906069 24.65809532 

C 37.60(51) 37.60(44) 37.66(65) 37.65(42) 37.6886189 37.85578863 

N 54.26(55) 54.26(50) 54.26(60) 54.33(14) 54.40093415 54.61162877 

O 74.68(18) 74.68(20) 74.77(35) 74.87(13) 74.8093984 75.10984381 

F 99.399(83) 99.399(83) 99.40(14) 99.49(26) 99.40934928 99.80712495 

Ne 128.525(60) 128.525(60) 128.525(60) 128.67(90) 128.547098 129.0524585 

Na 161.853(23) 161.853(23) 161.853(24) 162.0(13) 161.8589113 162.432 

Mg 199.6082(12) 199.6082(12) 199.6082(12) 199.9(21) 199.6146361 200.3227769 

Al 241.870(90) 241.870(90) 241.87(11) 242.3(15) 241.876707 242.7274558 

Si 288.786(96) 288.786(96) 288.786(96) 289.4(34) 288.8543622 289.8981547 

P 340.615(90) 340.615(90) 340.618(91) 341.4(13) 340.7187806 341.981871 

S 397.413(43) 397.413(43) 397.413(43) 398.6(70) 397.5048955 399.0866474 

Cl 459.467(20) 459.467(20) 459.471(60) 460.9(41) 459.4820719 461.4392275 

Ar 526.7998(60) 526.7998(60) 526.7998(60) 528.6(0.10) 526.8175122 529.219683 

K 599.157(20) 599.157(20) 599.157(20) 601.4(0.10) 599.1647831 602.02745 

Ca 676.7579(15) 676.7579(15) 676.7579(15) 679.6(0.12) 676.7581817 680.23001 
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Sc 759.7(17) 759.7(17) 759.7(17) 763.3(71) 759.7357123 763.94497 

Ti 848.2(0.11) 848.2(0.11) 848.3(93) 852.8(45) 848.4059907 853.35608 

V 942.75(15) 942.75(21) 942.75(12) 948.1(43) 942.8843308 948.86758 

 
 

  Rb 2938.058(64) 2938.058(64) 2938.058(50) 2978(2) 2938.357453 2978.5328 

Sr 3131.192(53) 3131.192(53) 3131.192(53) 3177(2) 3131.545686 3176.6117 

Cs 7553.9(16) 7553.9(16) 7553.9(16) 7787(5) 7553.933658 7777.2597 

Ba 7883.5(19) 7883.5(19) 7883.5(19) 8135(7) 7883.543827 8125.27581 

 

Table. 2. Basis sets and their description  

Basis Type Description 

ano-rcc Natural atomic orbitals relativistic correlated semi-core orbitals basis sets 

ccpvdz Correlation-consistent polarized valence-only double Zeta basis sets 

aug-pc-4 Augmented polarization-consistent basis sets 

ccpvtz Correlation-consistent polarized valence triple Zeta basis functions 

aug-cc-pvdz Augmented correlation-consistent polarized valence-only double Zeta basis sets  

adzp Augmented double Zeta basis functions  

dzp Double Zeta polarized basis sets 

ugbs Universal Gaussian basis sets  

    

Table.3. Difference of Energies in Hartree 

Elements 

Difference of energies from Bunge Difference of DHF 

from NIST RHF UHF ROHF DHF 

H N/A N/A N/A N/A 0.000257088 

He 5.32982E-05 5.32982E-05 5.32982E-05 7.97227E-05 5.32982E-05 

Li 3.97991E-05 1.5818E-05 3.97991E-05 0.000794195 1.5818E-05 

Be 0.000165181 0.000165181 0.000165181 0.002728726 0.000165181 

B 0.000430958 0.003572035 0.000430958 0.01240447 0.003572035 

C 0.085722539 0.018836986 0.085722539 0.032972623 0.018836986 

N 0.139764189 0.135257573 0.139764189 0.070109527 0.135257573 

O 0.124135172 0.032456415 0.124135172 0.061039111 0.032456415 

F 0.009497516 0.004617388 0.009497516 0.088088675 0.004617388 

Ne 0.021520809 0.021520809 0.021520809 0.131421496 0.021520809 

Na 0.005884657 0.005854606 0.005884657 0.21141322 0.005854606 

Mg 0.006339071 0.006339071 0.006339071 0.311072037 0.006339071 

Al 0.006573576 0.003197411 0.006573576 0.447788707 0.003197411 

Si 0.067454527 0.067454527 0.067454527 0.579466482 0.067454527 

P 0.103761322 0.099973671 0.103761322 0.755416804 0.099973671 

S 0.091773775 0.091773775 0.091773775 1.095116282 0.091773775 

Cl 0.014891313 0.010928414 0.014891313 1.419988608 0.010928414 

Ar 0.01764689 0.01764689 0.01764689 1.815009042 0.01764689 
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K 0.007493831 0.007411288 0.007493831 2.319814085 0.007411288 

Ca 0.000244831 0.000244831 0.000244831 2.891467676 0.000244831 

Sc 0.000649302 0.002326669 0.000649302 3.564389983 0.002326669 

Ti 0.117214648 0.066419801 0.117214648 4.40295688 0.066419801 

V 0.134304235 0.131812486 0.134304236 5.276644236 0.131812486 

 
     

Rb 0.298949608 0.298870404 0.298949608 40.60494735 0.298870404 

Sr 0.352842194 0.352842194 0.352842194 45.56642456 0.352842194 

Cs 0.00081741 0.00081741 0.000707922 233.0899014 9.763859435 

Ba 0.000667753 0.000667753 0.000667753 252.3857958 10.65381282 

 

The relativistic effects exist in all atoms regardless of their atomic 

numbers; only magnitude of these effects has central importance 

for required precision. The magnitude of relativistic effects is 

small for those atoms which have small atomic number while it is 

larger for heavier atoms. This is the reason that errors in energies 

of H-V atoms using non-relativistic methods (RHF, UHF, ROHF) 

are not significant but are present in greater magnitude in Rb, Sr, 

Cs, and Ba atoms. This is due to the fact that as the charge number 

increases, the three most common relativistic effects are occurred: 

(i) the relativistic contraction and stabilization of s orbitals and 

also of p orbitals but to a smaller extent, (ii) the spin-orbit splitting 

of p, d, f,….etc., (iii) the relativistic expansion and destabilization 

of d and f orbitals. These facts could be understood by writing the 

following Bohr’s expressions for inner 1s orbital in terms of 

relativistic approach 

  

𝑟 = 𝑎𝑟𝑒𝑙 =
𝑛24𝜋𝜖𝜊ℏ2

𝑚𝑟𝑒𝑙𝑍𝑒2        and  𝑚𝑟𝑒𝑙 =
𝑚0

√1−
𝑣2

𝑐2

         (24) 

By taking all constants (𝑒, ℏ, 𝑚0, 4𝜋𝜖𝜊) equal to 1 then the velocity 

for 1s orbital is 𝑣1𝑠 = 𝑍, which means that the velocity being 

proportional to Z and core electrons move with a speed comparable 

to speed of light (𝑐 ≅137.036 a.u.), therefore relativistic mass in 

denominator of radial equation would shrink the core orbitals. This 

shrinking of orbitals (s, p) causes to increase the ionization potential 

and electron affinities which stabilize the orbitals. This 

relativistically shrank radial distribution of inner s and p orbitals 

screen the nucleus resulting the increase in d and f orbitals and 

destabilize the orbitals. Consequently, the ionization potential 

decreases for valence d and f orbitals. The difference in energies 

between ground states and excited states of atoms may be affected 

by the stabilization/destabilization of the orbitals. It is considered in 

non-relativistic case that speed of light is infinite as compare to 

speed of electron of all orbitals, thus there is no relativistic 

contraction of inner orbitals. So, energies of Rb, Sr, Cs and Ba 

atoms calculated by using the non-relativistic methods (RHF, UHF, 

ROHF) end up with large errors. Because these atoms have large 

atomic numbers so have large atomic mass therefore their inner 

orbitals (s,p) must be contracted relativistically and hence their total 

ground state energies would increase. The results for these atoms 

using the DHF method are much closer to NIST data, which means 

that this method is a better choice for the computation of heavier 

atoms

 

IV. CONCLUSION 

To test the effectiveness of the Hartree-Fock method and its 

variants (RHF, UHF and DHF methods) in precession 

measurements, ground state energies of several atoms have been 

calculated. Upon comparing the obtained results with other 

theoretical results [21, 22] and NIST data [23] for same atoms, it is 

found that the results are good agreement with other results. The 

study discusses the importance of suitable choice of basis set, 

resulting in greater accuracy of estimated energies. Nevertheless, 

the energy accuracy can further be improved using larger basis sets 

and with the inclusion of relativistic effects in the basis functions 

or by applying post Hartree-Fock methods. This review concludes 

that Hartree-Fock method provides a good estimation of ground 

state energies of atoms but in terms of precession, more better 

methods are available than Hartree-Fock method. 
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