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Abstract 

Due to the possibility of spoilage bacteria and pathogenic bacteria contaminating food items, 

biofilms are an important risk issue in the food business. Most bacteria may stick to surfaces and 

create biofilms, and live for short or even longer, depending on the kind of bacterium surrounding 

circumstances. Multiple developmental phases, including as primary attachment, mating, 

maintenance, and dispersion, are included in the life cycle of biofilms. Because bacteria of biofilms 

are often well shielded from stress of the environment, they are very challenging to eliminate and 

find in the food sector. The strategies and medications used to stop and stop the formation of 

biofilms are provided and addressed in the current publication. Furthermore, a number of cutting-

edge methods, such as confocal laser scanning microscopy, polymerase chain reaction, DNA 

microarray, and, have recently been used to identify and assess bacteria adhered to surfaces. The 

prevention and management of food-related spoilage and pathogenic microorganisms can benefit 

from greater understanding of the structural, physiological, and molecular communication in 

biofilms. The current work emphasises fundamental and applied ideas that are crucial for 

comprehending how biofilms affect bacterial life, and spread in environments involved in 

processing of the food. 
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Introduction  

Bacteria can adapt their demands for existence in many settings with remarkable ease. The 

capacity of the microbe to create biofilms is one of the most significant microbial traits allowing 

these adaptations since it makes it easier to adapt to challenging environmental circumstances.  

A lot of work has been done in recent years to better understand microbial biofilms, which 

are described as intricate and organized communities in biology contained in an polymeric matrix 

that may form on wet surfaces that are either biotic or abiotic. Because bacteria may stick to 

practically any surface, including wood and food items, the development of biofilms in the food 

business is frequent and causes worry. Bacterial foodborne illnesses are more likely to arise and 

cause economic losses when they are attached to food and contact surfaces. For instance, 59% of 

food-borne illness outbreaks evaluated in France had equipment contamination with biofilms as a 

significant cause. Since they are shielded from environmental stressors like UV radiation, 

dehydration, or treatment with antibacterial and sanitising chemicals, bacteria in biofilms provide 

their members a survival advantage, which makes getting rid of them extremely difficult. Bacteria 

in biofilms may also be useful for biotechnological applications and for the food business. For 

instance, it aids in the waste treatment process and the manufacture of fermented foods. 

Biofilm in the Food Industry  

There are significant ramifications when bacteria cling to surfaces used in the food business 

and subsequently form biofilms. Such organised microbial communities are an opportunity for raw 

materials and processed food to get contaminated goods as they go through different phases of 

food manufacturing activities. They serve as a reservoir of microorganisms in food processing 

facilities. Additionally, the existence of biofilms may result in food spoiling, financial losses, 

shortened product shelf lives, or disease transmission. Salmonella spability .'s to stick to surfaces 

was originally documented in a research on pathogenic bacterial biofilms [46]. Since then, several 

bacteria, including Listeria monocytogenes, shown to produce biofilm in food producing facilities. 

Escherichia coli, Campylobacter jejuni, Staphylococcus spp., and Yersinia enterocolitica [47, 

161]. 

 L. monocytogene is detected in environment of food company facilities and been isolated 

from dairy processing facilities. This microbe has strong adhesion to inert surfaces and has been 
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shown to persist for a long time in sessile form (32, 58, 71, 97, 129, 161, 176). For instance, 

Unnerstad et al. [177] discovered similar L. monocytogenes clone surviving for 7 years in a dairy 

facility. Additionally, Miettinen et al. [121] showed that isolates of L. monocytogenes PFGE type 

II have endured for at least 7 years in an ice cream factory.  

Common food borne microbes in the food industry is Staphylococcus aureus [116, 152]. 

Researchers have shown that the Staphylococcus genus may attach to surfaces and produce 

biofilms [116]. In their investigation of biofilm development in S. aureus strains associated with 

food and clinical settings grown under various stresses such as temperature and ethanol. Rode et 

al. [152] found that certain food additives, including sodium chloride and glucose, may encourage 

S. aureus to form biofilms. Exopolysaccharides (EPS) and biofilm formation by E. coli  occur on 

food surfaces and machinery utilised in beef companies [20, 44]. Earlier this year, Mendonça et 

al. [117] also showed that E. coli O157:H7 had the ability to form biofilm on various surfaces 

frequently used by the food industry, and Dourou et al. [44] found that E. coli indicating the 

necessity for more comprehensive cleanliness programmes. In addition to the places where cattle 

is slaughtered (15 °C), attachment also happened during cold storage (4 °C). 

A problem for the food business is that lactic-acid bacteria (LAB) may result in biofilm, 

which might lead to unnecessary change in foods [87, 95]. One such instance is the non-starter 

lactic acid bacteria Lactobacillus curvatus, which may create calcium lactate crystals and the 

isomer D-()-lactic acid, which causes biofilm to grow and may cause sensory abnormalities in 

cheese [95]. Additionally, Bacillus biofilms production has been described, for example, in the 

powder of milk and in processing plants of whey, indicate a risk for foodborne illnesses [47, 101, 

158]. 

It is also important to emphasise the advantages of biofilms for the food business, which 

are connected to biotechnological applications. For example, while making vinegar, the bacteria 

of acetic acid produce on the wood chips, and the attachments of bacterias promotes a more 

effective formation of acid from substrate. Biofilms are crucial components in the creation of 

fermented foods [172]. Additionally, findings from investigations by Demirci et al. [41] showed 

that Saccharomyces cerevisiae's synthesis of ethanol in biofilms had advantages over traditional 

fermentation due to its increased productivity. Since Asper gillus niger biofilms established on 

polyester fabric produced 70% higher cellulose activity than easily floating mycelial culture, 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition  ISSN : 1673-064X  
 

http://xisdxjxsu.asia  VOLUME 18 ISSUE 10 October 2022  626-658 

Gamarra et al. [53] conclude that Aspergillus niger biofilms may be exploited for industrial 

manufacture of celluloses. Due to uses in companies in the processing of food, textiles, washing, 

flesh, and paper, these enzymes are significant. According to Morikawa [125], the prevention of 

infection brought on by the pathogens of plant, the decrease of steel corrosion, and the use of new 

chemicals are positive factors connected to biofilm development by B. subtilis and other bacilli. 

Controlling growth of harmful biofilms is crucial, yet good biofilms produced by industrial 

microorganisms may aid in the creation of novel biotechnological procedures. 

Biofilm Formation  

The term "biofilm" refers to an organised bacterial community that is attached to sides or 

other objects and fixed in an exopolysaccharide medium [38].  Their development entails the 

following steps: (1) initial planktonic cell attachment on surface (2) creation of extracellular 

polimeric medium (3) establishment of microcolonies and chemical signal secretion; (4) 

maturation of biofilm architecture; and (5) cell dispersion [62, 68, 123, 154]. However, several 

elements that will be covered in greater detail will need to be taken into record in this procedure 

of biofilm production. 

Biofilm Architecture  

On both biotic and abiotic surfaces, pathogenic biofilms produced by bacteria such 

Salmonella spp., L. monocytogene, S. aureus, E. coli O157:H7, Bacillus cereus, and Vibrio 

cholerae had been well researched [10, 17, 25, 164, 168, 179]. However, several pathogens, 

including Chronobacter sakasakii, B. cereus, and C. jejuni, can form detached totals and pellicle 

at the air-liquid edge [79, 96, 187]. Bacteria often produce non-uniformly constructed biofilms that 

vary in thickness, cell distribution, depending on the bacterial strain, genetic characteristics, 

environmental factors, as well as the experimental model employed in laboratory experiments 

(Table 1). A heterogeneity structural picture of microbial biofilms is provided by microscopic 

techniques including scanning electron microscopy, confocal laser Cry embedding and scanning 

microscopy were followed by sectioning and microscopic examination.. In contrast to SEM, 

CSLM and cry embedding techniques offer a greater capacity to photograph the inside of the 

biofilm and a greater capability to deliver quantitative data [17, 65, 66, 171].  
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Mature biofilms could previously be observed using a microscope method as an intriguing 

architecture comprised of clusters and edges, or more complicated micro colonies grouped in stalk-

like or mushroom-like forms. Additionally, cell-free holes and networks in the biofilm's core may 

be seen, which may indicate a location for nutrition and waste exchange as well as local cell 

dispersion. For the organisation and maintenance of biofilms, certain cell free regions can be 

discovered full with EPS [17, 68, 69, 91, 171]. 

Factors Involved in Biofilm Formation: Surface Properties, Environmental Factors and EPS  

Because they affect the first cell attachment, the physicochemical properties of bacterium 

and hard sides in the food business are crucial for biofilm development [1]. A few good examples 

of surface characteristics include hydrophobicity, cation bridging, roughness, and topography 

[133, 150, 181]. However, it is acknowledged that surface materials metal, plastic etc. frequently 

used in home or in the industry of food processing have a part in the retention of pathogens of 

foodborne [160, 174]. There is no agreement on whether bacteria can attach to hydrophilic and 

hydrophobic surfaces. Stainless steel type 304 is the contact material used in the food business 

because it is corrosion-resistant, easy to clean, and chemically occur at a range of processing 

temperatures [194].  

Table 1: Biofilm architecture of some foodborne pathogens according to experimental 

laboratory model used 

Bacteria Experimental Model Biofilm architecture Reference 

C. Sakasakii Static condition 
Flow condition 

Pellicles and flocks. 
Basal Layer of cells and 
Micro colonies. 

(96) 
(70) 

L. monocytogenes Static condition 
 
 
Flow condition 

Homogeneous layer 
and micro colonies of 
rod cells. 
Ball-shaped micro-
colonies surrounded by 
network of knitted 
chains composed of 
elongated cells. 

(151) 

C. perfringens Static condition 
 

Flat and thickness 
biofilm encased in a 
dense EPS. 

(179) 

P. aeruginosa Static condition 
 
Flow condition 

Flat biofilm during 
early colonization. 

(106) 
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Mushrooms like micro 
colonies surrounded by 
water-filled voids 
latter. 

S. aureus Static and flow 
condition 

Dense layer of cells (144) 

 

However, in general, because of constant usage, the material's topography exhibits fissures 

and crevices that shield the germs from mechinary cleaning techniques and sanitising treatments 

[161]. Additionally, some food processing tools and equipment, such as dicers, rollers, and 

conveyor belts, may contain difficult-to-clean inaccessible places [32, 165]. Additionally, any 

leftover food particles or particles, such as proteins in  milk of beef, might be adsorbent to the 

surface and build a conditioning layer on food processing. Typically beginning during the first five 

to ten seconds of contact, this early stage may offer a niche where microorganisms can quickly 

proliferate [82, 88, 165, 194]. Thus, food medium can significantly hinder the sanitising and 

cleaning of surfaces used in food preparation. Additionally, bacteria may sense surfaces and/or 

connect to them by using sporulation, cellular membrane constituents such as protein and 

supplements (such as flagella, pili, fimbriae, and curli fibres) [15, 19, 36, 78, 138, 157, 166, 179, 

187].  

Additionally, various environmental parameters, such as pH, temperature, the amount of 

nutrients in the medium, and the population features of bacteria, have a effect on the 

physicochemical features of solid surfaces as well as cell wall modification [34, 64, 81, 83, 152]. 

Between various and different shapes of the same species, the EPS volume, arrangement, chemical 

makeup, and physical characteristics might change greatly [40, 49, 111, 114, 150]. Among Gram-

positive bacteria, staphylococci are among the best EPS producers, creating a slime with teichoic 

acid, small amounts of proteins, and a concoction of polycationic exopolysaccharide and 

polysaccharide intercellular adhesin (PIA) known as poly-N-acetylglucosamine (PNAG), and 

polysaccharide intercellular adhesin (PIA) [135]. Similar to PIA, adhesin-like polymers appear to 

be produced by some species of Gram-negative bacteria, such as E. coli [185]. However, since it 

was identified by Whitchurch et al. [186] as a significant component of structure of P. aeruginosa 

biofilm, the eDNA has received the most attention as an element of EPS. Other pathogens, such 

as B. cereus, S. aureus, L. monocytogenes, and V. cholerae, have recently had their role and 
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potential source revealed [21, 39, 67, 106, 144, 156, 182]. Therefore, understanding these unique 

matrix components' roles in biofilm formation and dispersal as well as their interactions with other 

cell components may help researchers come up with fresh ways to stop and manage biofilms. 

Bacterial Biofilm Dispersal  

Bacterial dispersion might happen in the environment spontaneously when biofilms 

form,most likely as a result of hazardous waste buildup or nutritional deficiency [81, 155].  

According to Kaplan [80], active or passive processes are often responsible for biofilm 

dissemination. The former is connected to bacterial structures and the synthesis of extracellular 

chemicals (e.g., signalling molecules). The latters is affected by outside factors via several 

processes 1) Sloughing, also known as the quick and extensive elimination of significant areas of 

the biofilm, is most frequently done in the later phases of biofilm production.; 2Shearing or 

erosion, which describes the regular elimination of a biofilm's one cell or tiny branches of cells at 

low levels throughout the biofilm growth process.; and (3) Abrasion is the term for the detachment 

brought on by solid particles slamming into the biofilm. When bacterial contamination is brought 

about by human interaction in medical devices or food processing facilities, chemical, physical, or 

biological cleanup can also be utilised [29, 63].  Additionally, in single-species and multi-species 

biofilms by creating interspecific antimicrobial chemicals, intimate connections based on 

competition, mutualism may cause cell dispersion matrix-degrading enzymes or quorum sensing 

(QS) sig nals [30, 112, 115, 124, 173, 178]. As a result, it emphasises the fact that a variety of 

elements are "necessary" or "needed" for the dispersal of  biofilm, and some of them are crucial to 

successfully removing primary molded biofilms on hard exteriors. 

Methods to Prevent and to Control Cells in Biofilms  

For regulating food quality and safety, Good Manufacturing Practice and Hazard Analysis 

and Critical Control Points have been devised [158].  Identifying the Critical Points where biofilms 

might grow and evolve is one of the first stages in preventing and controlling them [158, 194]. 

Compared to their planktonic counterparts, microorganisms in biofilms are 1,000 times more 

resistant to disinfectants. The synthesis of enzymes that break down antimicrobial compounds, 

decreased diffusion, anaerobic growth, physiological changes brought on by slower growth rates, 

and other characteristics of the physiology of biofilms [73, 88, 163, 165]. The most popular 

disinfectants used by the food industry, such as quaternary ammonium compounds, ozone, 
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peracetic acid, phenols, and biguanidines, are insufficient to remove the biofilms as a result of 

those factors [129, 161, 189, 194]. As a result, a combination of sanitizers and other techniques is 

occasionally necessary [118, 161, 163].  Because of their capacity to pierce and reach tight spaces, 

steam vapour technology and aerosolized sanitizer are promising uses for disinfecting biofilms on 

environmental surfaces [141].  

According to Park et al. [141], treatment along 100 ppm of per acetic acid was much 

successful than the same dosage of sodium hypochlorite in inactivating biofilm-borne L. 

monocytogenes, Salmonella Typhimurium, and E. coli O157:H7. A procedure known as Clean-

In-Place (CIP) is used in dairy manufacturing facilities (DMP) to reduce biofilm. CIP comprises 

cleaning and sanitising using a mix of machine-driven, current, and chemical processes [24, 88, 

95, 128]. Preventing cell adherence by altering the chemical composition of surfaces is another 

method for managing biofilms [27, 163]. Surfactants have a basic structural property that includes 

both a hydrophilic and hydrophobic arrangement, and they may aid in enhancing cleaning 

processes through through emulsification and wetting [27, 163]. It has been discovered that the 

biosurfactants generated by a wide range of bacteria, actinobacteria, and fungi may be helpful in 

preventing the development of biofilms [57, 161, 167].  

According to Gómez et al. [58], pre conditioning polystyrene exteriors with surfactin 

(0.25%) decreased L. monocytogenes and S. enteritidis adherence by 42.0%, whereas treatment 

with rhamnolipids (1.0%) reduced L. monocytogenes adhesion by 57.8% and S. aureus union by 

67.8%. Molecular and genetic underpinnings of pathogenic biofilm development are the present 

focus of research since they may help with the creation of fresh methods to obstruct important 

biofilm growth pathways [70, 90, 94, 97, 176]. Although the molecular processes by which the 

majority of foodborne pathogen develop biofilms are not well understood, it is identified that 

cellulose and aggregative fimbriae (Tafi) are two predominant matrix components of Salmonella 

biofilms [168, 169]. In S. aureus, the development of biofilms is regulated by a number of genes, 

primarily sarA, agr, ica, and sigB [2]. 

According to the research, QS systems may influence the establishment of biofilms as well 

as networks that regulate sporulation, competence, and virulence [2, 84, 161, 169]. Due to the 

uncertainty surrounding their safety, Other microbial, vegetal, and animal species release QS 

inhibitors, along with Quorum Quenching enzymes, which cause the enzymatic decimation of 
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indication particles, are also a very appealing way for control and regulation of biofilms, though 

this is still a challenge [2, 81, 93, 161]. Enzymatic cleaning has the potential to be employed in the 

food sector as an another technique to eliminate biofilms. Cryotin, and krilltrypsin were tested in 

contradiction of biofilms of Lactobacillus bulgaricus, Lactobacillus lactis, and Streptococcus 

thermophilus by Augustin et al. [11]. Despite the positive outcomes mentioned by the writers, the 

usage of enzymes is quiet restricted since it can be challenging to determine which enzymes are 

most efficient against certain forms of biofilms and because they are expensive. [118, 161].  

Bacteriophages, viruses that specifically mark bacteria, may also be a viable approach for 

eliminating undesired bacteria in biofilms. The foundation of phage treatment is the use of lytic-

phages that have the capacity to compromise the structural integrity of the EPS matrix seen in 

biofilms [43, 147, 161]. According to Pires et al. [147], lytic phages were isolated and 

characterised, and they were able to infect antibiotic-resistant P. aeruginosa strains and cause a 3 

log drop in cell counts in biofilms. Due to their ability to regulate biofilm, antimicrobial 

compounds known as bacteriocins have received much research [55, 161]. Although the precise 

mode of action in biofilms is still not fully understood, bacteriocins are well recognized to create 

holes in the bacterial cell membrane [3]. Winkelströter et al. [188] showed that L. monocytogenes 

biofilm development may be inhibited by culture supernatant covering bacteriocin generated by 

Lactobacillus sakei 1. Spray-dried Lactococcus lactis UQ2 or Lactococcus lactis UQ2 decreased 

L. monocytogenes Scott A planktonic and sessile cells adhered to stainless steel chips by more 

than 5 log [55]. To control bacteria in biofilms, several natural antimicrobial substances have been 

investigated [8, 20]. After 24 hours of exposure, Laird et al. [89] showed that the number  of 

Enterococcussp. and S. aureus in biofilms were decreased by 1.5 and 3 log by the essential oil 

vapours of orange/bergamot (1:1, v/v). Sugar fatty acid esters decreased S. aureus adhesion, as 

demonstrated by Furukawa et al. in their study (51). Monocytogenes, L. and Streptococcus mutans 

on an abiotic surface. Scallop shell powder (SSP) was shown by Bodur and CagriMehmetoglu [20] 

to reduce the growth of L. monocytogenes, S. aureus, and E. coli O157:H7 in biofilms on stainless 

steel surfaces, while acidic and neutral electrolyzed waters were shown by Arevalos-Sánchez et 

al. [8] to has significant antibacterial action against listerial biofilms at doses of 65 ppm or higher. 

Although progress has been made to understand the processes that govern undesired biofilms, 

additional research is still required in this field because no strategy is thought to be 100% 

successful. Techniques for Finding and counting bacterium in Biofilms. Sessile cells be removed 
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from exteriors using techniques including sonication, sponge swabbing, and agar plating or 

enrichment for pathogen identification. The swabbing approach may not be effective in removing 

all bacteria, according to some authors [26, 50, 56, 119, 137], and using an ultrasonic device may 

produce more consistent results [9, 136, 137]. The combined swab-vortex method outperformed 

shaking, vortexing with glass beads, vortex and sonication in removing germs from stainless steel, 

according to Luppens et al. [104].Other writers [100, 122] did not discover any appreciable 

variations between these approaches. By using direct microscopic inspection, Bremer et al. [24] 

confirmed that after the vortexing procedure but not after the swabbing approach, mixed biofilms 

of bacteria persisted on the surface under study. By using a SEM, Lindsay and von Holy [100] 

found shaked beads unconcerned cells and EPS remains from the exteriors more effectively than 

vortexing.  

Numerous microscopy methods, including fluorescent microscopy, CLSM, and scanning 

electron microscopy, have been used to qualitatively and/or quantitatively analyse the architecture 

of biofilms on various surfaces. Examining fluorescent specimens requires the use of CLSM and 

fluorescence microscopy. Fluorescence microscopy can only analyse multilayered biofilms in two 

dimensions, but CLSM enables quantitative visualisation of biofilm reconstructions in two-

dimensional, three-dimensional and four-dimensional space without causing any invasiveness to 

the subject [45, 93]. Calculations of the biofilm's volume, volume to surface ratio, roughness ratio 

, mean thickness, and maximum thickness are also possible, but they rely on the availability of 

specialised software and the user's knowledge of how to use it [18, 92]. The most widely used 

fluorescent probes for determining the total number of bacteria in biofilms are those that mark 

DNA and RNA with acridine orange (AO) or other DNA-specific dyes  The most popular 

feasibility-staining methods for biofilm tasters are CTC-DAPI (5-cyano-2,3-ditolyl tetrazolium 

chloride and 4′,6-diamidino-2-phenyindole and the LIVE/DEAD bacterial viability kit Bac 

LightTM, is used to distinguish between total cells and living cells by noticing metabolic activity 

and cell viability, respectively. Binding of total cells (SYTO 9, SYTO 63), dead cells (SYTO X 

blue), proteins (SYPRO Ruby and fluorescein isothiocyanate [FITC]), lipids (DiD, Nile red), and 

extracellular-polysaccharides (EPS) (Calcofluor white, concanavalin A-tetramethylrhodamine 

conjugate), a variety of fluorophores are also used to characterize biofilm. Genetically modifying 

microorganisms to show fluorescent protein (FP), which didn’t need substrate or other factors for 

its activitation, is another option for studying microorganisms in biofilms [162]. Multi-species 
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biofilms are also studied utilising dual approaches that employ two FP variations or one FP 

different paired with a glowing dye. [38, 61, 86, 105, 108, 126, 151].  

Light microscopy struggles to capture the intricate ultrastructure of biofilms, while electron 

microscopy, such as SEM, has a greater picture and can reveal position of a solo bacterial cell as 

well as the three-dimensional (3D) structure of the biofilm. However, the biofilm samples must be 

dehydrated during preparation for SEM examinations, and the biofilm structure may change [5]. 

There isn't a single technique that enables you to see the structure of the biofilm matrix, according 

to Alhede et al [5] .'s comparison of four multiple SEM techniques: conventional SEM, Focused 

Ion Beam (FIB)-SEM, CLSM with SEM techniques [cryo-SEM and environmentalSEM (ESEM), 

and SEM with CLSM. Lawrence [91] further showed that multimicroscopic study is required to 

fully understand the structure and content of biofilms. AFM is a different high-resolution imaging 

method that uses a straightforward sample preparation process [190] and is effective for assessing 

important parameters such size of cell, and surface roughness [46]. The incapacity to acquire a 

broad area review scan, the inability to examine the dividers of bacterial cells, and the easy 

character of the biofilm are some of the limitations of AFM [191]. Dáz et al. [42] used an AFM to 

study the flagella's direction in the biofilm that P. fluorescens developed on hard, dense exteriors 

without taster pre-cure. Teixeira et al. [174] employed AFM to evaluate the topography and 

roughness of surfaces quantitatively, but they struggled to connect the dots between surface 

characteristics and adhesion strength. AFM may provide good resolution pictures of P. aeruginosa 

type IV pili and is adequate to explore their elastic characteristics, according to research by 

Touhami et al. [175]. By hybridising to ribosomal RNA, FISH is now a common molecular 

technique for locating and measuring specific genera in microbial populations. In Phylogenetic 

markers at the 16S and 23S rDNA sequences are used to create rRNA-targeted oligonucleotide 

probes for FISH, or peptide nucleic acid fluorescence in situ hybridization. (PNA-FISH) [59, 107, 

139, 153]. These probes are labelled with a fluorescent dye (Cy3, FAM, FITC, rhodamine), an 

enzyme, or both. Shorter peptides are used in the PNA-FISH approach, which has greater 

specificity and understanding than traditional DNA probes [6, 110]. In order to prevent food 

contamination, methods for quick foodborne pathogen detection on surfaces are crucial. Molecular 

techniques, such as real-time polymerase chain reactions, can be used as an alternative to quickly 

identify and measure the presence of bacterial pathogens on contaminated surfaces (RT-PCR). 

Reactions are carried out in a 1 tube system, this approach is quick, sensitive, and specific, and it 
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minimises post-PCR contamination. It can also identify a small number of germs on surfaces. DNA 

from dying cells is amplified leads to false-positive PCR findings, a different approach to prevent 

Apply an improvement method that rises concentrations of targeted cells and only lets for the 

detection of living bacteria [60, 109]. Additionally, based on membrane integrity, PCR has been 

utilised to quantify living cells in biofilms as descripted by Nogva et al. [131]. These researchers 

employed the DNA intercalating dyes ethidium monoazide (EMA) and propidium monoazide 

(PMA), which only enter cells with damaged membranes (dead cells). Quantitative PCR (qPCR) 

is used to extract genomic DNA and analyse it without include cells with damaged membranes in 

the study. Because some bacterial species' living cells may also be penetrated by EMA, which 

causes significant DNA loss, the PMA assay may have a significant benefit done the EMA assess 

[130, 140].  

Using qRT-PCR and fluorescent dyes, several papers have estimated the number of 

duplicates of a mark gene and evaluated the quantity of RNA transcripts of specific genes to 

calculate the bacterial numbers in biofilms. Readings on gene appearance in biofilms may target 

specific genes using different fluorescently labelled probes, and the usage of double-categorized 

probes lets the simultaneous examination of several genes. [60, 98, 143]. Gene expression data 

from microarrays may be verified using qRT-PCR, which has a wide dynamic range. Another 

molecular technique that makes it possible to concurrently analyse several genes is the DNA 

microarray. Microarrays, which are composed of hundreds of different DNA arrangements, each 

one linked at a identified place to a tiny solid surface, may be used to learn about the genetic 

foundation of microbial diversity, evolution, and epidemiology. An indication of the nucleic acid 

sequences can be produced by complementary, tagged mRNA or DNA binding to the static 

arrangements, creating a gene expression profile for a particular microbe. [13, 103, 104, 191].  

Compared to biofilm cells and planktonic cells, or mutant vs. wild-type cells, microarrays 

have mostly been employed to analyse changes in gene expression caused by environmental 

stressors or treatments that imitate circumstances seen in the food business [149, 184, 192, 193]. 

In more recent years, a large number of writers have employed molecular techniques and 

proteomic tests to clarify several biofilm structural components, regulatory mechanisms, and 

signalling molecules involved in the development of biofilms [72, 76, 183, 192]. In order to grow 

and quantify biofilms using 96-well microtiter plates, a number of high-throughput techniques 
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have been developed. These techniques include (aSYTO 9 [22], the BioFilm Ring Test®, and the 

Biofilm Biomass Assay, which assesses living and dead cells as well as medium stained with 

crystal violet (CV) [99, 170]. Resazurin or Alamar Blue [132], the XTT test [4, 52, 146], and non-

fluorescent fluorescein diacetate (FDA) [74, 142] are examples of such tests. are all methods for 

quantifying live cells.  

The 1,9-dimethyl methylene blue (DMMB) dye, which is produced when a decomplexation 

solution is added and indicates the quantity of polysaccharides that occur in the biofilm matrix, 

may be used to quantify the biofilm matrix [14]. Broad application and high repeatability in 

microtiter plate tests for resazurin, XTT, FDA, SYTO 9, and DMMB were confirmed by Peeters 

et al. [142]. Due to fewer handling procedures, including no washing or staining, the BioFilm Ring 

Test® was quicker than the CV technique [33]. The Alamar Blue technique has a number of 

advantages over other approaches, absence of chemical toxicity, and viability assessment [146]. 

Burton et al. [28] established a spectro fluorometric method to measure bacteria growing in 

microtiter plates and discovered that it was further complex and specific than CV stain. They 

stained bacterial biofilms with wheat germ agglutinin-Alexa Fluor 488 conjugate, which 

specifically binds to N-acetylglucosamine remains in biofilms. To see and measure biofilms, some 

authors combined specialized microplates with microscopy, such as the Calgary Biofilm Device 

(CBD) and SEM [31] or CLSM and SEM [68]. Benoit et al. [16] created a Bioflux system with 

regulated flow rates and real-time viability determination that permits microscopic analysis, 

whereas Bridier et al. [25] employed a technique paired with CLSM. examination. 

Conclusion 

 In the surroundings of the food business, several bacteria are able to stick and form 

biofilms, which may serve as a significant reservoir for adulteration of food items. Biofilms exhibit 

a tremendous degree of difficulty, and many of the underlying processes are still poorly 

understood. Recent years have seen a significant increase in the use of genomic and proteomic 

analysis to screen and discover genes associated with biofilm development or dispersion. In an 

effort to manage the microorganisms in biofilms, these novel approaches may improve our study 

of the molecular underpinnings of the regulatory pathways in biofilms. They will also accelerate 

the creation of new tactics and technology. 
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