SQUARES OF SQUARE DIFFERENCE LABELING ON PATH RELATED GRAPH S. Alice Pappa and *G.J. Jeba Selvi Kavitha
 ${ }^{1}$ Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai TuticorinAffiliated to Manonmaniam Sundaranar University Abishekapatti, Tirunelveli - 627012, India Email alicestephen8979@gmail.com
 ${ }^{2}$ Research Scholar, Reg. No. 19232142092007, Department of Mathematics, Nazareth Margoschis
 College At Pillaiyanmanai Tuticorin-Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, India.and St. Joseph's College of Arts and Science for Women- Hosur. Email jebaselvikavitha @ gmail.com

Abstract

Let $G(V, E)$ be a graph with p vertices and q edges. Let $f: V(G) \rightarrow$ $\{0,1,2, \ldots, p-1\}$ be a bijection. Define $f^{*}: E(G) \rightarrow N$ by $f_{s s d}^{*}(u v)=\left[(f(u))^{2}-\right.$ $\left.(f(v))^{2}\right]^{2}, \forall u v \in E(G)$. If $f_{s s d}^{*}$ is injective then $f_{s s d}^{*}$ is called squares of square difference labeling of G. A graph G which admits squares of square difference labeling is called squares of square difference graph. We applied squares of square difference labeling to Path related graphs

1. Introduction

Every graph in this paper are simple finite, undirected and non-trivial graph $G=$ (V, E) with vertex set V and Edge set E. For graph theoretic terminology we refer to Harary. The square sum labeling is defined by V. Ajitha, S. Arumugam and K. A. Germina.

We have improved to the square of square difference and we investigated it for path related graph

2. Definition

Definition 2.1

A Path P_{n} in a graph is a sequence of edges, each one incident to the next.

Definition 2.2

A Path P^{2} is a graph is obtained by appending $v_{i} v_{i+1}$ and v_{j} and v_{j+2} for $1 \leq i \leq n-1$ and $1 \leq j \leq n-2$

3. Theorems

Theorem3.1 The Path graph P_{n} is a squares of square difference graph.

Proof

Let $V=\left\{v_{i} / 1 \leq i \leq n\right\}$ be the vertex set of P_{n} graph.
Let $E=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\}$ be the edge set of P_{n} graph.
Here $|V(G)|=n$ and $|E(G)|=n-1$.
Define $f: V \rightarrow\{0,1,2, \ldots, p-1\}$ by
$f\left(v_{i}\right)=i-1 ; 1 \leq i \leq n$
Clearly f is a bijection.

Then the corresponding edge label are as follows

$$
\begin{aligned}
& f_{s s d}^{*}\left(v_{i} v_{i+1}\right)=\left[\left[f\left(v_{i}\right)\right]^{2}-\left[f\left(v_{i+1}\right)\right]^{2}\right]^{2}=\left[i^{2}-2 i+1-i^{2}\right]^{2} \\
& \quad=[-2 i+1]^{2}=4 i^{2}+1-4 i ; \forall 1 \leq i \leq n-1
\end{aligned}
$$

Clearly the edge labels are distinct.
P_{n} is a square of square difference graph.

Figure 3.1

Theorem3.2 The Path graph $P^{2}{ }_{n}$ is a squares of square difference graph.

Proof

Let $V=\left\{v_{i} / 1 \leq i \leq n\right\}$ be the vertex set of $\mathrm{P}^{2}{ }_{\mathrm{n}}$ graph.
Let $E=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+2} / 1 \leq i \leq n-2\right\}$ be the edge set of $\mathrm{P}^{2}{ }_{\mathrm{n}}$ graph.
Here $|V(G)|=n$ and $|E(G)|=2 n-3$.
Define $f: V \rightarrow\{0,1,2, \ldots, p-1\}$ by
$f\left(v_{i}\right)=i-1 ; 1 \leq i \leq n$
Clearly f is a bijection.
Then the corresponding edge label are as follows

$$
\begin{aligned}
& f_{s s d}^{*}\left(v_{i} v_{i+1}\right)=\left[\left[f\left(v_{i}\right)\right]^{2}-\left[f\left(v_{i+1}\right)\right]^{2}\right]^{2}=\left[i^{2}-2 i+1-i^{2}\right]^{2} \\
& \quad=[-2 i+1]^{2}=4 i^{2}+1-4 i ; \forall 1 \leq i \leq n-1 . \\
& f_{s s d}^{*}\left(v_{i} v_{i+2}\right)=\left[\left[f\left(v_{i}\right)\right]^{2}-\left[f\left(v_{i+2}\right)\right]^{2}\right]^{2}=\left[i^{2}-2 i+1-\left(i^{2}+2 i+1\right)\right]^{2} \\
& \quad=[-4 i]^{2}=16 i^{2} ; \forall 1 \leq i \leq n-1 .
\end{aligned}
$$

Clearly the edge labels are distinct.
$\mathrm{P}_{\mathrm{n}}^{2}$ is a square of square difference graph.

Figure 3.2

4 Conclusions

In this paper, we proved Path P_{n} graphs and P_{n}^{2} graphs are squares of square difference graphs. There may be interesting squares of square difference graphs can be constructed in future.

References

[1] A Galian, A dyanamic survey of graph labeling, The electronic journal of combinatories (2019).
[2] A Galian, A dyanamic survey of graph labeling, The electronic journal of combinatories (2019).
[3] Germina K.A, Reena Sebastian, On Square Sum Graphs,Proyecciones Jouranal of Mathematics, Vol. 32 No. 2, pp. 107-117 June 2013.
[4] J. Shiama, Square Difference Labeling for Some Graphs, InternationalJournal of Computer Application (0975-8887) Vol. 44- No. 4 April 2012
[5] Sunoj B.S. Mathew Varkey T.K, Square difference prime labeling for some snake graphs, Global Journal of Pure and Applied Mathematics, ISSN: 0973-1768, Vol. 13, No. 3(2017), p.p 108-1089.

AUTHORS

FIRST AUTHOR - S. Alice Pappa,Associate Professor Department of Mathematics, Nazareth MargoschisCollege at PillaiyanmanaiNazareth-628617, Tuticorin-Affiliated to Manonmaniam Sundaranar University Tamil Nadu, India. Email alicestephen8979@ gmail.com SECOND AUTHOR - G.J. Jeba Selvi Kavitha, Research Scholar, Department of Mathematics, Nazareth Margoschis College At Pillaiyanmanai Tuticorin-Affiliated to Manonmaniam Sundaranar University and Department of Mathematics, Assistant Professor, St. Joseph's College of Arts and Science for Women- Hosur.,Email jebaselvikavitha@gmail.com

CORRESPONDENCE AUTHOR - G.J Jebaselvi Kavitha, Email
jebaselvikavitha@gmail.com, Email vimjas1@gmail.com, CONTACT: 9486001853

