# **Exact Edge Domination in Graphs**

V. Annie Vetha Joeshi\*, A. Anto Kinsley\*\*

\* Research Scholar(Reg No: 11760), Department of Mathematics, St. Xavier's College(Autonomous), Affiliated to Manonmaiam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India.

\*\*Associate Professor, Department of Mathematics, St. Xavier's College(Autonomous), Affiliated to Manonmaiam Sundaranar University,

Abishekapatti, Tirunelveli 627012, Tamil Nadu, India.

Abstract- Let G = (V, E) be a connected graph. Let G = (V, E) be any connected graph. Let  $X \subseteq E$ . The set X is said to be an *exact edge dominating set*, if  $|N(e_i) \cap X| = 1$  and  $|N(e_j) \cap X| \leq 1$  for every  $e_i \in E(G) - X$  and  $e_j \in X$ . An exact edge dominating set is denoted as ExED set. The exact edge domination number  $\gamma'_e(G)$  of a graph equals the cardinality of a minimum exact edge dominating sets in the given graphs are derived. Also the bounds of size and diameter of the graphs are defined in terms of maximum degree  $\Delta(G)$ . We prove that in a connected graph G with  $\gamma'_e(G) = l$ . Then  $2l \leq m \leq 2l(\Delta(G) + 1)$ .

*Index Terms*- Exact dominating set, exact edge dominating set, wounded spider, corona graph

# I. INTRODUCTION

For standard notations we do not introduce here, the reader is always referred to the introductory chapter of [3]. Domination in graphs has been studied extensively in recent years. The book by Haynes, Hedetniemi, and Slater [4] is entirely devoted to this area.

Let G = (V, E) be a simple, finite, connected and undirected graph. The exact domination in graphs concept was introduced by Anto Kinsley[1]. The order and size of G are dentoed by *n* and *m* respectively. For basic graph theoretic terminology we refer to G. Chartrand [3]. A set of vertices  $S \subseteq V$  is called a *dominating set* of G if every vertex of G is dominated by at least one member of S. Equivalently a dominating set is efficient if the distance between any two vertices in S is at least three, that is S is a packing. Two edges in a graph are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G. While a matching of maximum cardinality is a maximum matching. If M is a matching in a graph G with the property that every vertex of G is incident with an edge of M, then M is a perfect matching in G. Clearly if G has a perfect matching M, then Ghas even order and  $\langle M \rangle$  is a 1-regular spanning subgraph of G.The *corona* of two graphs  $G_1$ , and  $G_2$  is the graph  $G = G_1 \bigcirc G_2$  formed from one copy of G<sub>1</sub> and  $|V(G_1)|$  number of copies of G<sub>2</sub> where the  $i^{th}$  vertex of  $G_1$  is adjacent to every vertex in the  $i^{ih}$  copy of  $G_2$  for  $1 \le i \le |v(G_1)|$ . A graph G is said to be a wounded spider formed by subdividing at most t - 1 of the edges of a star  $K_{1,t}$  for  $t \ge 0$ . The concept of edge domination was introduced by Mitchell and Hetetniemi[5]. The required basic definitions are studied from Haynes T. W, et all. [6]. This paper is fascinated on exact edge domination in graphs. Throughout this paper,  $P_n$ ,  $C_n$ , and  $K_n$  will stand for the path, cycle and complete graph with order n respectively.

# II. EXACT EDGE DOMINATING SET

#### Definition 2.1

Let G = (V, E) be any connected graph. Let  $X \subseteq E$ . The set X is said to be an *exact edge dominating set*, if  $|N(e_i) \cap X| = 1$  and  $|N(e_j) \cap X| \leq 1$  for every  $e_i \in E(G) - X$  and  $e_j \in X$ . An exact edge dominating set is denoted as ExED set.

#### **Definition 2.2**

The exact edge domination number  $\gamma'_e(G)$  of a graph equals the cardinality of a minimum exact edge dominating set.

# Example 2.3

Consider the graph G,

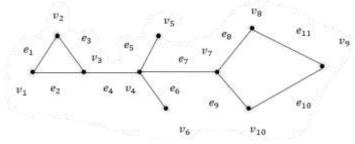


Figure 2.1: A graph G for exact edge dominating set

In Figure [2.1], The set  $X = \{e_1, e_5, e_{10}, e_{11}\}$  forms ExED set. Also the set  $\{e_1, e_6, e_{10}, e_{11}\}$  is an ExED set. But the set  $\{e_2, e_7, e_{11}\}$  is a edge dominating, but not a ExED set.

The parameter  $\gamma'_{e}(G)$  cannot be computed for some graphs. For example, cycle  $C_5$  not having ExED set.

# Example 2.4

Consider the graph G'

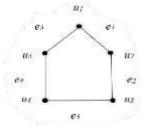


Figure 2.2. A graph G' not having ExED set

In Figure [2.2], Let  $X' = \{e_1, e_2\}$ , then  $|N(e_4) \cap X'| = 0$ . Then X' is not an ExED set. Suppose  $X' = \{e_1, e_2, e_4\}$ , then  $N(e_5) \cap X' =$  $\{e_1, e_4\}$  and  $N(e_3) \cap X' = \{e_2, e_4\}$ . That is  $|N(e_5) \cap X'| =$  $|N(e_3) \cap X'| = 2 \neq 1$  where  $e_5, e_3 \in V - X'$ . Then X' is not an ExED set.

In figure 1, Add an edge  $e_{12} = v_7 v_9$  in G, then G has no ExED set.

# Theorem 2.5

Let *G* be any connected graph and with the condition  $deg(e_i) = 1$ ,  $deg(e_i) > 1$  and  $e_i$  and  $e_i$  are adjacent edges in G. If X is an ExED set and  $e_i, e_i \in X$ , then X is not aExED set.

# Proof

Let *X* be an ExED set and  $e_i, e_i \in X$ . Then we have to prove that X is not a minimum ExED set, then either  $X - \{e_i\}$  or  $X - \{e_i\}$  is not an ExED set. The set  $X - \{e_i\}$  is not an ExED set, since  $deg(e_i) > 1$  and by definition of ExED set the edges of the set  $N(e_i) - \{e_i\}$  are not dominated by any other edges in X. In this case X is not a minimum ExED set. But the set  $X - \{e_i\}$  is an ExED set. That is all the edges of  $\{E(G)\cup\{e_i\}\}$  – X are dominated by any other edges in X.

# Theorem 2.6

Let *G* be any connected graph order  $n \ge 4$  and *X* be a minimum ExED set with  $|N(e_i) \cap X| = 1$  for all  $e_i \in X$ , then  $deg(e_i) \neq 1$ . Proof

Suppose  $deg(e_i) = 1$  and  $N(e_i) \cap X = \{e_i\}$  for  $i \neq j$  where  $e_i, e_i \in X$ . Since  $deg(e_i) = 1$ , assume that u and v be two vertices incident with the edge  $e_i$ , then deg(u) + deg(v) - 2 = 1which implies that, deg(u) + deg(v) = 3. Then either deg(u) = 2, deg(v) = 1 or deg(u) = 1, deg(v) = 2. Take deg(u) = 1, deg(v) = 2, which means that v is the support vertex of the vertex u. let  $w \in N(V)$ , then  $e_i = uv$  and  $e_i = vw$ . By above theorem  $X - \{e_i\}$  is an ExED set. Then X is not a minimum ExED set in G. Hence  $deg(e_i) \neq 1$ .

# Remark 2.7

Let X be a ExED set with  $N(e_i) \cap X = \{e_i\}$  where  $e_i, e_i \in X$  and *u*be a vertex incident with both  $e_i$  and  $e_j$ . Then deg(u) = 2.

# Remark 2.8

By the above theorems [2.5], [2.6], If S is a minimum ExED set, with  $deg(e_i) = 1$ , for all  $e_i \in X$ , then  $|N(e_i) \cap X| = 0$ .

# Theorem 2.9

Let G be any connected graph and X be a ExED set in G. Let Xbe the set defined as the number of vertices incident with the edges in X. If  $|N(e_i) \cap X| = 0$  for all  $e_i \in X$ , then X contains even number of vertices.

# Proof

By our assumption,  $N(e_i) \cap X = \emptyset$ , for all  $e_i \in X$ . Every edge is incident with two vertices. Let |X| = k. The k edges are incident with 2k vertices. Hence X contains even number of vertices.

# Theorem 2.10

If X is a ExED set in  $G \odot H$  with  $\gamma'_e(G \odot H) = 1$  if and only if  $G \cong K_2$  and  $H \cong K_1$  or  $G \cong K_1$  and  $H \cong K_2$ .

# Remark 2.11

Let G and H be a connected graph of order  $n_1$  and  $n_2$ respectivley. Suppose  $n_1 > 2$  or  $n_2 > 2$ , then  $G \bigcirc H$  has no ExED set.

# Theorem 2.12

Let G wounded spider graph. Then  $\gamma'_{e}(G) = 2$ , for s = 1 and for  $2 \le s \le t - 1$ , *G* does not have an ExED set.

# Theorem 2.13

The Complete graph  $K_n$ , n > 3, has no ExED set. Proof

Suppose *X* be an ExED set in  $K_n$ . Suppose |X| = 2 and  $e_1, e_2 \in X$ . Then by definition  $|N(e_1) \cap X| \le 1$  and  $|N(e_2) \cap X| \le 1$ , for  $e_1, e_2 \in$ X. Suppose  $|N(e_1) \cap X| = 1$ , then obviously  $N(e_1) \cap X = \{e_2\}$ . Take  $a_1a_2 = e_1$  and  $a_2a_3 = e_2$ . But for  $n \ge 4$ ,  $deg(a_2) \ge 3$ , by theorem [2.6], remark[2.7], is a contradiction. Suppose  $|N(e_1) \cap$ |X| = 0 and  $|N(e_2) \cap X| = 0$ . Take  $a_1a_2 = e_1$  and  $a_3a_4 = e_2$ . In  $K_n, a_3$ is adjacent to  $a_1$  and  $a_2$ , similarly  $a_4$  is adjacent to  $a_1$  and  $a_2$ . Then there exits an edge  $e_l$  such that  $|N(e_l) \cap X| = 2$ , for  $e_l \in E(G)$ -X, which is a contradicts our assumption that X is an ExED set. For |X| > 2, we get the above similar cases. Hence we can conclude that,  $K_n$  has no ExED set.

# Remark 2.14

For  $K_n$ , n = 3, then  $\gamma'_{e}(K_n) = 1$ .

# Remark 2.15

For  $K_n$ ,  $n \leq 2$ , then  $K_n$  has no ExED set.

# Theorem 2.16

The Wheel graph  $W_n$ ,  $n \ge 4$  has no ExED set.

# Theorem 2.17

Let X be an ExED in G with  $\gamma'_{e}(G) = l$  and  $X'_{e}(G) = \{x, y \in V(G) / d\}$  $xy = e_i$ , for all  $e_i \in X$  where  $1 \le i \le l$ . Then we have the following: 1D

(i). when *l* is even, 
$$\langle X'_e(G) \rangle = \begin{cases} l P_3 \\ \left(\frac{l}{2}\right) P_3 \\ (2s)P_2 \cup \left(\frac{l-2s}{2}\right) P_3 \end{cases}$$
, where  $1 \le l$ 

 $s \leq \left(\frac{\iota-2}{2}\right)$ (ii). when l is odd  $\langle X'_e(G) \rangle = \begin{cases} lP_2\\ (2t+1)P_2 \cup \left(\frac{l-(2t+1)}{2}\right)P_3 \end{cases}$ , where  $0 \le t \le \left(\frac{l-3}{2}\right)$ .

# Remark 2.18

By the theorem[2.17] we have  $\frac{3l}{2} \le |X'_e(G)| \le 2l$ , when *l* is even and  $\frac{3l+1}{2} \le |X'_e(G)| \le 2l$ , when *l* is odd. When *l* is even, for the upper bound of  $|X'_{e}(G)|$ , we have  $\langle X'_{e}(G) \rangle = lP_{2}$ . Then  $|X'_{e}(G)| = 2l$ . And for lower bound of  $|X'_e(G)|$  occurs when  $\langle X'_e(G) \rangle = \left(\frac{l}{2}\right) P_3$ . Then  $|X'_e(G)| = \frac{3l}{2}$ . Consider  $\langle X'_e(G) \rangle = (2s)P_2 \cup \left(\frac{l-2s}{2}\right)P_3$ , where  $1 \le s \le \left(\frac{l-2}{2}\right)$ .

When 
$$s = 1$$
, then  $|X'_e(G)| = (2 \times 1)2 + 3\left(\frac{l-1}{2}\right) = \frac{8+3l-6}{2} = \frac{3l+2}{2}$ . When  $s = \frac{l-2}{2}$ , then  $|X'_e(G)| = \left(2\left(\frac{l-2}{2}\right)\right)2 + 3\left(\frac{l-2\left(\frac{l-2}{2}\right)}{2}\right) = 2l - 4 + 3 = 2l - 1$ . Therefore  $\frac{3l+2}{2} \le |X'_e(G)| \le 2l - 1$ , for  $1 \le s \le \left(\frac{l-2}{2}\right)$ .

# http://xisdxjxsu.asia

# **VOLUME 18 ISSUE 3**

Similarly, when *l* is odd, the upper bound of  $|X'_{e}(G)|$  occurs, when  $\langle X'_{e}(G) \rangle = lP_{2}$ . And for the lower bound of  $|X'_{e}(G)|$ , consider  $\langle X'_e(G) \rangle = (2t+1)P_2 \cup \left(\frac{l-(2t+1)}{2}\right)P_3$ , where  $0 \le t \le t$  $\left(\frac{l-3}{2}\right)$ . When t = 0,  $\left|X'_{e}(G)\right| = 2 + \left(\frac{l-1}{2}\right)^{2} 3 = \frac{4+(l-1)3}{2} = \frac{3l+1}{2}$ . When t > 0, we have  $|X'_e(G)| > \frac{3l+1}{2}$ . Therefore,  $\frac{3l+1}{2} \le \frac{3l+1}{2}$  $|X'_e(G)| \leq 2l.$ 

# **III. BOUNDS ON SIZE AND DIAMETER OF THE GRAPH G WITH RESPECT TO MAXIMUM DEGREE IN G**

# Theorem 3.1

Let *m* be the size and  $\Delta(G)$  be the maximum degree in G with  $\gamma_{\rho}(G) = l$ . Then  $2l \leq m \leq 2l(\Delta(G) + 1)$ .

# Proof

Let X be an ExED set in G with  $\gamma'_e(G) = l$ . Let X =  $\{e_{l_1}, e_{l_2}, \dots, e_{l_l}\}$  be an ExED set and  $S_X = \{a_1, a_2, \dots, a_{2l}\}$  be the set of vertices incident with the edges of X. For upper bound of m, consider  $|N(e_i) \cap X| = 0$ , for all  $e_i \in X$ . Then  $deg(a_i) \leq \Delta(G)$ , for  $1 < i \le 2l$ . Suppose  $deg(a_i) = \Delta(G)$ , for all  $a_i$ , then  $\Delta(G)$ number of vertices incident with each  $a_i$ . Take  $a_i b_{i_i} = e_{i_i}$ , where  $e_{i_i} \in E(G) - X$  and  $1 \le j \le \Delta(G)$ . Since G is connected, then  $X_i =$  $\{e_{i_i}/a_ib_{i_i} = e_{i_i}, \text{ where } 1 \le j \le \Delta(G)\}$  for  $1 < i \le 2l$  is the set which consists the edges in E(G) - X. Then  $m = |X| + |X_i| = l + l$  $\Delta(G) + \Delta(G) + \cdots + \Delta(G) = l + 2l\Delta(G) = l(1+2\Delta(G)).$ 2l times

 $2l(\Delta(G) + 1)$  for  $deg(a_i) \leq \Delta(G)$ .

For lower bound of *m*, consider  $|N(e_{l_a}) \cap X| \le 1$ , for all  $e_{l_a} \in X$ . Then we have following two cases.

Case (i). When l is odd with  $N(e_{l_k}) \cap X = \{e_{l_{k+1}}\}$ , where k = 2r+ 1, for  $r = 0, 1, 2, ..., \frac{l-3}{2}$  and  $N(e_{l_l}) \cap X = \emptyset$  with respect to X. Take  $deg(a_i) = 2$ , since G is connected,  $m = 4\left[\left(\frac{l-3}{2}\right) + 1\right] + 3 =$ 2(l-1) + 3 = 2l + 1. When  $deg(a_i) > 2$ , we get m > 2l + 1. Then we can conclude that  $m \ge 2l + 1$ , when l is odd with  $|N(e_{l_n})|$  $\cap X \leq 1$ , for all  $e_{l_a} \in X$ .

*Case (ii).* When *l* is even with  $deg(a_i) = 2$  with  $|N(e_{l_a}) \cap X| = 1$ , then by the above case we have  $m = \frac{4l}{2} = 2l$ . When  $deg(a_i) > 2$ , we get m>2l. Therefore,  $deg(a_i) \ge 2$ , we get  $m \ge 2l$ . Hence by above all the case,  $2l \le m \le 2l(\Delta(G) + 1)$ .

# Theorem 3.2

Let *G* be a connected graph with  $\gamma'_{\rho}(G) = l$ , then  $diam(G) \leq 3l$ . Proof

Let X be an ExED set in G with  $\gamma'_{\rho}(G) = l$ . By definition of an ExED set we have  $|N(e_i) \cap X| = 1$  and  $|N(e_i) \cap X| \le 1$  for every  $e_i \in E(G) - X$  and  $e_i \in X$ . Let us now consider the case  $|N(e_i) \cap X| = 0$  for all  $e_i \in X$ . Let  $S_X = \{u_1, u_2, u_3, \dots, u_{2l}\}$  be the set of vertices which are incident with edges of X. For upper bound of diam(G), let us now consider the diametrical path d which consists of all the *l* number of edges of *X*. Then  $e(u_a) \leq 3l$ -2, for all  $u_a \in S_x$  and  $e(u_b) \leq 3l$ , for all  $u_b \in V(G)$  -  $S_x$ . Therefore,  $max\{e(u_x)\} = 3l$ , which means that diam(G) = 3l, for every

 $u_x \in V(G)$ . Suppose that  $|N(e_i) \cap X| \leq 1$ , for all  $e_i \in X$ . Then for lower bound of diameter of G, we have the following two cases. *Case(i).* When *l* is even with  $|N(e_i) \cap X| = 1$ , for all  $e_i \in X$ , then  $e(u_a) \leq 2l - 1$ , for all  $u_a \in S_x$  and  $e(u_b) \leq 2l$ , for all  $u_b \in V(G) - S_x$ . Therefore,  $max\{e(u_x)\} = 2l$ , which means that diam(G) = 2l, for every  $u_x \in V(G)$  in this case.

*Case(ii).* When *l* is odd with  $|N(e_i) \cap X| \le 1$ , for all  $e_i \in X$ , then  $e(u_a) \leq 2l$ , for all  $u_a \in S_x$  and  $e(u_b) \leq 2l + 1$ , for all  $u_b \in V(G) - S_x$ . Therefore in this case,  $max\{e(u_x)\} = 2l + 1$ , which means that diam(G) = 2l + 1, for every  $u_x \in V(G)$ .

From all the above cases  $max\{e(u_x)\} = 3l$ , for  $u_x \in V(G)$ , that is diam(G) = 3l, for  $u_x \in V(G)$  with  $|N(e_i) \cap X| = 0$  for all  $e_i \in X$ . If atmost l-1 number of edges lie on the diametrical path d, then diam(G) < 3l. Therefore, we can conclude that  $diam(G) \le 3l$ , for every  $u_x \in V(G)$ .

# Theorem 3.3

Let X be a ExED set in a connected graph G with  $\gamma'_{e}(G) = l$ , and *l* is even where  $l \ge 4$  and  $\Delta(G)$  be the maximum degree of *G*, then  $diam(G) \ge 8$ , for  $\Delta(G) \ge \frac{l}{2}$  and  $diam(G) \ge 10$ , for  $\Delta(G) < \frac{l}{2}$ .

# Proof

Let X be a ExED set in G with  $\gamma'_{e}(G) = l$  and  $\Delta(G)$  be the maximum degree of G. For lower bound of diameter of G, let us consider  $|N(e_{j_1}) \cap X| = 1$ , for all  $e_{j_1} \in X$ . Take  $N(e_{j_1}) \cap X =$  $\{e_{i_1}\}$  for  $e_{i_1} \in X$ . let  $u_a$  be a vertex in G such that  $u_a u_{b_1} = e_{l_1}$ , such that  $deg(u_a) = \Delta(G)$ ; where  $e_{l_1}$  is the edge incident with the vertices  $u_{b_1}$  and  $u_a$  and  $u_{b_1}$  is the vertex  $u_{b_1}u_{g_1} = e_{i_1}$ . Then we have following two claims for getting the lower bound of diameter of G.

Claim A. Suppose  $\Delta(G) = \frac{l}{2}$ , Since X is an ExED set in G, then there exits an edges  $e_{i_f}, e_{j_f}$  such that  $N(e_{j_f}) \cap X = \{e_{i_f}\}$ , for  $2 \leq 1$  $f \leq \Delta(G)$ . Also by definition of and ExED-set, the edges  $e_{j_x}$  are adjacent to the edges  $e_{w_x}$  , where  $u_{d_x}u_{c_x} = e_{w_x}$ , for  $1 \leq$  $x \leq \Delta(G).$ 

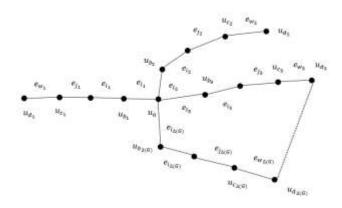


Figure 3.1. The graph G having diam(G)  $\geq 8$ , for  $\Delta(G) \geq \frac{1}{2}$ 

From Figure[3.1] we can easily say that  $e(u_{d_v}) = d(u_{d_v}, u_a) + d(u_{d_v}, u_a)$  $d(u_a, u_{d_z}) = 4 + 4 = 8$ , for all  $u_{d_z}, u_{d_y} \in V(G)$  with  $z \neq y$  and  $1 \leq z \neq y$ y,  $z \leq \Delta(G)$ , which is the maximum eccentricity in G. Then

 $\begin{array}{l} diam(G)=8. \ \mbox{Suppose that } deg(u_a) < \Delta(G), \ \mbox{then } diam(G) > 8. \\ \mbox{Hence we can conclude that } diam(G) \geq 8, \ \mbox{for } \Delta(G) = \frac{l}{2} \ \mbox{with } l \geq 4. \\ Claim B. \ \mbox{Assume that, } \Delta(G) < \frac{l}{2}, \ \mbox{then } \Delta(G) + \xi = \frac{l}{2} \Rightarrow l = \\ 2(\Delta(G) + \xi) \ \mbox{where } 1 \leq \xi \leq \frac{l-2\Delta(G)}{2}. \ \ \mbox{Suppose } deg(u_a) = \Delta(G) \\ \mbox{and } deg(u_{b_x}) = \Delta(G) \ \mbox{with } l = 2(\Delta(G) + \xi), \ \mbox{where } 1 \leq \xi \leq \\ \Delta(G)(\Delta(G) - 2), \ \mbox{by the above case, for lower bound of diameter} \\ \mbox{of } G, \ \mbox{there exists atmost } \Delta(G) - 2 \ \mbox{number of edges adjacent to} \\ \mbox{each } u_{b_x}, \ \mbox{where } 1 \leq x \leq \Delta(G). \\ \mbox{Let } u_{ax_s} \ \mbox{be the set of vertices adjacent to } u_{b_x}, \ \mbox{where } 1 \leq s \leq \\ \Delta(G) - 2. \ \mbox{Take } u_{bx_s} u_{ax_s} = e_{lx_s} \ \mbox{such that } N(e_{lx_s}) \cap X = \{e_{lx_s}\}, \end{array}$ 

where  $e_{lx_s} \in E(G) - X$  and  $e_{ix_s} \in X$ . By our assumption  $N(e_{ix_s}) \cap X = \{e_{jx_s}\}$ , where  $e_{jx_s} \in X$ , where  $1 \le x \le \Delta(G)$  and  $1 \le s \le \Delta(G) - 2$ . By definition of ExED set in *G*, there exists edges  $e_{wx_s} = u_{cx_s}u_{dx_s}$ , such that  $N(e_{wx_s}) \cap X = \{e_{jx_s}\}$ .



Figure 3.2. The graph G having diam(G) = 10 when  $\Delta(G) < \frac{l}{2}$ i.e.,  $l = 2(\Delta(G) + \xi)$ , where  $1 \le \xi \le \Delta(G)(\Delta(G) - 2)$ 

From figure[3.2],  $e(u_{dx_g}) = d(u_{dx_g}, u_a) + d(u_a, u_{dr_h}) = 4 + 6 =$ 10, where  $1 \le g, h \le (\Delta(G) - 2)$  and  $1 \le x, r \le \Delta(G)$  with  $h \ne g$  and  $r \ne x$ , which gives the maximum eccentricity in *G*. Then diam(G) = 10, for  $1 \le \xi \le \Delta(G)(\Delta(G) - 2)$ . Suppose  $deg(u_a) < \Delta(G)$  and  $deg(u_{b_x}) < \Delta(G)$  with  $l = 2(\Delta(G) + \xi)$ , where  $(\Delta(G) - 1)^2 \le \xi \le \frac{l - 2\Delta(G)}{2}$ , then diam(G) > 10. Therefore  $diam(G) \ge 10$ , for  $\Delta(G) < \frac{l}{2}$ .

#### **IV. CONCLUSION**

This paper discusses and analyses the exact edge domination number for some standard graph. Using the exact edge domination number the diameter and size of the graph are disclosed.

#### ACKNOWLEDGMENT

The authors are highly thankful to the innominate referees for their beneficent comments and fruitful suggestions on the first draft of this paper.

#### REFERENCES

- A. Anto Kinsley, V. Annie Vetha Joeshi, *Exact Domination in Graphs*, Malaya Journal of Matematik, Vol, S, No. 1, (2020), 236-242.
- [2] D. W. Bange, A. E. Barkauskas and P. J. Slater, *Efficient dominating sets in graphs*, in: Applications of Discrete Mathematics, R.D. Ringeisen and F.S. Roberts, eds (SIAM, Philadelphia, 1988) 189-199.
- [3] Chartrand and Ping Zhang, *Introduction to graph Theory*, Tata McGrew Hill Education Private Ltd, New Delhi, 327-333.
- [4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fudamentals of Domination in Graph,s* Eds., pp.321-349, Marcel Dekker, New York, USA, 1998.
- [5] Teffany V. Daniel, Serigo R. Canoy, Jr, *Clique domination in a graph*, Applied Mathematical Sciences, Vol. 9, 2015, no. 116, 5749-5755.
- [6] A. Włoch, 2012, On 2-dominating kernels in graphs, Austral. J. Combin. 53: 273 - 284.