Center Smooth Two Restrict Complement Domination on Graphs

A. Anto Kinsley", J. Joan Princiya**
* Department of mathematics, St. Xavier's College (Autonomous), Palayamkottai. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India.
**Research Scholar, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India.

Abstract

Let S be a dominating set of a graph G and $R S^{c} \subseteq V(G)$. The set $R S^{c}$ is called a center-smooth $2-R S^{c}$ set of a center smooth graph G if $\left|N(v) \cap R S^{c}\right| \geq 2$ for every vertex $v \in S$. The centersmooth 2-RS ${ }^{c}$ number $\gamma_{2 c s}(G)$ of a graph G is the number of vertices in a center-smooth $2-R S^{c}$ set of G. In this paper, we introduce the new concept center-smooth $2-R S^{C}$ number. The center-smooth $2-R S^{C}$ number $\gamma_{2 c s}(G)$ of G is the number of vertices in a center-smooth $2-R S^{c}$ set of G. Some results on this new parameter are established and $\gamma_{2 c s}(G)$ is computed for some special graphs and also proved that $\gamma_{2 c s}(G)=6$ for Petersen graph G. A result is proved for a triangle free connected graph G with minimum degree $\delta(G) \geq 2$. The following results are also proved. (i). If a connected graph G has exactly one vertex of degree $p-1$, then $\gamma_{2 c s}(G)=\gamma_{2 c s}(\bar{G})+\Delta(G)$ and (ii). Let G be a graph with cut edge $e=u v$ where u and v are only central vertices, $\delta(G)=1$. If $\gamma_{2 c s}(G)=p-|\{u, v\}|$, then $\gamma(G)+\gamma_{2 c s}(G)=p$.

Keywords- Center smooth graph, Restrict S^{c}-set, Center smooth 1^{c} domination number, center smooth 2-RS ${ }^{c}$ number.

Mathematics Subject Classification 2010: 05C12.

I. Introduction

We consider only finite simple undirected connected graphs. For the graph $G, V(G)$ denotes its vertex set and $E(G)$ denotes its edge set. As usual, $p=|V|$ and $q=|E|$ denote the number of vertices and edges of a graph G, respectively. For a connected graph $G(V, E)$ and a pair u, v of vertices of G, the distance $d(u, v)$ between u and v is the length of a shortest $u-v$ path in G. The degree of a vertex u, denoted by $\operatorname{deg}(u)$ is the number of vertices adjacent to u. A vertex u of a graph G is called a universal vertex if u is adjacent to all other vertices of G. A graph G is universal graph if every vertex in G is universal vertex. For example, the complete graph K_{p} is universal graph. The set of all vertices adjacent to u in a graph G, denoted by $N(u)$, is the neighborhood of the vertex u. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. Thus, $e(u)=\max \{d(u, v) / v \in V(G)\}$.
A vertex v is an eccentric vertex of u if $e(u)=d(u, v)$. The radius $r(G)$ is the minimum eccentricity of the vertices, whereas the
diameter $\operatorname{diam}(G)$ is the maximum eccentricity. The center of G, $C(G)=\{v \in V(G) / e(v)=r(G)\}$.
Definition 1.1. The S-eccentricity $e_{S}(v)$ of a vertex v in Gis $\max _{x \in S}(d(v, x))$. The S-center of G is $C_{S}(G)=\left\{v \in V \mid e_{S}(v) \leq\right.$ $e_{S}(x)$ for every $\left.x \in V\right\}$.
Example 1.1. In figure 1, $S=\left\{u_{1}, u_{3}, u_{6}\right\}$ and $V-S=\left\{u_{2}, u_{4}, u_{5}\right.$, $\left.u_{7}\right\}$. The S-eccentricity $e_{S}\left(u_{1}\right)=3, e_{S}\left(u_{2}\right)=1, e_{S}\left(u_{3}\right)=3, e_{S}\left(u_{4}\right)$ $=3, e_{S}\left(u_{5}\right)=3, e_{S}\left(u_{6}\right)=2, e_{S}\left(u_{7}\right)=3$. Then the S-center $C_{S}(G)=$ $\left\{u_{2}\right\}$.

Figure 1. Center smooth graph
Definition 1.2. The S_{1}-eccentricity, $e_{S_{1}}(v)$ of a vertex v in S is $\max _{x \in V-S}\left(d(v, x)\right.$). The S_{1} center of G is $C_{S_{1}}(G)=\left\{v \in V \mid e_{S_{1}}(v) \leq\right.$ $e_{S_{1}}(x)$ for all $\left.x \in V\right\}$.
Example 1.2. In figure 1, $S=\left\{u_{1}, u_{3}, u_{6}\right\}$ and $V-S=\left\{u_{2}, u_{4}, u_{5}\right.$, $\left.u_{7}\right\}$. The S_{1}-eccentricity $e_{S_{1}}\left(u_{1}\right)=3, e_{S_{1}}\left(u_{2}\right)=1, e_{S_{1}}\left(u_{3}\right)=3, e_{S_{1}}\left(u_{4}\right)$ $=3, e_{S_{1}}\left(u_{5}\right)=3, e_{S_{1}}\left(u_{6}\right)=2, e_{S_{1}}\left(u_{7}\right)=3$. Then the S_{1}-center, $C_{S_{1}}(G)=\left\{u_{2}\right\}$.
Definition 1.3. Let G be a graph and S be a proper set of G. G is called a center-smooth graph if $C_{S}(G)=C_{S_{1}}(G)$ and the set S is said to be a center-smooth set.
Example 1.3. In figure 1, $C_{S}(G)=\left\{u_{2}\right\}=C_{S_{1}}(G)$.
Definition 1.4. A set S is called 1-dominating set if for every vertex in $V-S$, there exists exactly one neighbor in S. The minimum cardinality of a 1 -dominating set is denoted by $\gamma_{1}(G)$.
Definition 1.5. Let S be a dominating set of center smooth graph G. Then the Restrict- $S^{c}\left(R S^{c}\right)$ set of a graph G is defined by $R S^{c}=$ $\left\{\begin{array}{l}v \in R S^{c} ;|N(v) \cap S|=1 \\ v \notin R S^{c} ;|N(v) \cap S|>1\end{array}\right.$ and the number of $R S^{c}$ - set of G is denoted by $n R(G)$. If $R S^{c}$ - set is independent set then the number of $R S^{c}$ - set of G is denoted by $n i R(G)$.
Definition 1.6. Let S be a dominating set of G and $R S^{c} \subseteq V(G)$. Then the set $R S^{c}$ is called a center smooth I^{c} dominating set of a
center smooth graph G if for every vertex in S^{c} has at least one neighbor in S. The number of vertices in $R S^{c}$ of a center smooth graph G is called center smooth 1^{c} domination number and it is denoted by $\gamma_{1}^{c} c s(G)$.

II. RESULTS ON CENTER-SMOOTH TWO RESTRICT COMPLEMENT DOMINATION

Definition 2.1. Let S be a dominating set of G. Then $R S^{c} \subseteq V(G)$ is a center-smooth $2-R S^{c}$ set of a center smooth graph G if $\left|N(v) \cap R S^{c}\right| \geq 2$ for every vertex $v \in S$. The center-smooth $2-R S^{c}$ number $\gamma_{2 c s}(G)$ of a graph G is the number of vertices in a centersmooth 2-RS ${ }^{c}$ set of G.
Proposition 2.2. Let G be a graph with $p>2$ vertices. If a universal vertex v of degree $p-1$ then $\gamma_{2 c s}(G)=p-1$.
Proof: Let v be a universal vertex of degree $p-1$. Then it is clear that, v is adjacent to all other vertices in G. Since $p>2$, then at least two or more vertices are adjacent to v in G. Thus, $\left|N(v) \cap R S^{c}\right| \geq 2$. Therefore, every vertex in G not in S is $\gamma_{2 c s}$-set of G. Hence, $\gamma_{2 c s}(G)=p-1$.
Theorem 2.3. If there exists exactly one vertex of even degree in a tree T with $p>2$ vertices, then $\gamma_{2 c s}(T)=p-1$ and the bounds are sharp.
Proof: Let v be a vertex of even degree and all other vertices having odd degree. Further, let U be the set of all odd degree vertices in T. Let $R S^{c}$ be a $\gamma_{2 c s}$-set of T and contains only the vertices in U. Suppose $v \in R S^{c}$, then a vertex in U is adjacent to v and $\mathrm{N}(v) \cap R S^{c}=\phi$. It is a contradiction. Therefore, $v \in S$ and $N(v) \cap R S^{c}=R S^{c} \geq 2$. Hence $\gamma_{2 c s}(T)=p-1$ and the bounds are sharp for $T=P_{3}$ or $K_{l, p-1}, p=5,7,9 \ldots$
Corollary 2.4. If there exists exactly one vertex of even degree in a tree T with $p>2$ vertices, then $\gamma_{2 c s}(T)=\gamma_{1}^{c} c s(T)$
Proof: From the main theorem (2.3), $T=P_{3}$ or $K_{l, p-1}, p=5,7$, $9 \ldots$ Clearly, $\gamma_{2 c s}(T)=\gamma_{1}^{c} c s(T)=p-1$.
Theorem 2.5. If every vertex v in a tree T has an odd degree, then $\gamma_{2 c s}(T)=p-k$ where k is the number of vertices which are having maximum degree in a tree T.
Proof: Assume that there exists a vertex v in a tree T has odd degree. Then an edge $x y \in E(T)$ with $N(v)=x \in R S^{c}$ and $y \notin R S^{c}$ and we can choose $x_{1} \in R S^{c} \cap N(y)$ with $x_{1} \neq x$. Then $N\left(x_{1}\right)$ has even degree, as is $\left|N\left(x_{1}\right) \cap R S^{c}\right|$. Since $y \in N\left(x_{1}\right)$ with $y \notin R S^{c}$, we can choose a vertex $x_{1} \neq y$ where $y_{1} \in N\left(x_{1}\right)$ but $x_{1} \notin R S^{c}$. Iterating this procedure, we could obtain an arbitrarily long path x, y, x_{1}, $y_{1}, x_{2}, y_{2}, \ldots$ in T with each $x_{\mathrm{i}} \in R S^{c}$ and each $y_{\mathrm{i}} \notin R S^{c}$. Thus, $\gamma_{2 c s}(T)$ $\neq p-k$. This is a contradiction. Hence each vertex v of odd degree, then $\gamma_{2 c s}(T)=p-k$.
Theorem 2.6. Let G be a graph with $p>2$ and $\delta(G)=\Delta(G)=p-1$ then $\gamma_{2 c s}(G)=p-1$ if and only if G is K_{p}.
Proof: Let G be any graph. Assume that, G has $\delta(G)=\Delta(G)=p-1$. Then it is clear that each vertex in G is adjacent to all vertices in G. Since $p>2$, every vertex v in G is adjacent to at most $p-1$ vertices in G. Since, $R S^{c}$-set has p - 1 vertices, so that every vertex v dominates $N(v)$ and the vertices in $V-N(v)$ dominate themselves. Thus, G is K_{p}. Conversely, suppose G is K_{p}. Then any vertex $v \in V(G)$ dominate all other vertices in G. So that $\delta(G)=\Delta(G)=p$ 1. Since $p>2$, each vertex v is adjacent to two or more vertices in G. Hence $R S^{c}$-set has $p-1$ vertices and so $\gamma_{2 c s}(G)=p-1$.
Theorem 2.7. Let G be a graph with $\delta(G)=\Delta(G)=2$ then $\gamma_{2 c s}(G)$ $\leq p-1$ if and only if G is C_{p}.

Proof: Let G be any graph and $\delta(G)=\Delta(G)=2$. Then each vertex in G dominates 2 vertices and $p=q$. Suppose, $\gamma_{2 c s}(G) \leq p-1$. Then $R S^{c}$ contains atleast two vertices. Hence, G forms a cycle C_{p}. Conversely, suppose G is C_{p}. Then each vertex is adjacent to 2 vertices in G. Therefore degree of each vertex is 2 . That is, $\delta(G)=\Delta(G)=2$. Let $R S^{c}$ be a $\gamma_{2 c s}$-set of G. If $|S|=1$ then $\left|R S^{c}\right|$ $=p-1$. If $|S|>1$ then $\left|R S^{c}\right|<p-1$. Thus, it follows that $\gamma_{2 c s}(G) \leq p-1$.
Theorem 2.8. For any graph $G=K_{l, p-l}, \gamma_{2 c s}(G)=\gamma_{1}^{c} c s(G)$.
Proof: Let $R S^{c}$ be a $\gamma_{2 c s}$-set which contains only a set of end vertices in G and $S=\{v\}$ be a dominating set of G. Clearly, the vertex v is an universal vertex of G. Then $R S^{c} \cap N(v)=R S^{c} \geq 2$. Hence $\gamma_{2 c s}(G)=p-1$ and so $\gamma_{1}^{c} c s(G)=p-1$. Therefore, it follows that, $\gamma_{2 c s}(G)=\gamma_{1}^{c} c s(G)$.
Theorem 2.9. Let G be a graph with $\delta(G)=1$ or 2 . If $\gamma_{2 c s}(G)=p$ 1 then $\operatorname{diam}(G) \leq 2$.
Proof: Since $\gamma_{2 c s}(G)=p-1$, then $p>2$. Let $S=\{v\}$ be a dominating set of G. If u and w be vertices of G such that degrees of u and w are equal to 1 . Then u and w are end vertices in G and also v dominates u and w. Since $R S^{c}$-set has $p-1$ vertices and $\operatorname{diam}(G)=2$. If degree of u and w is not equal to 1 , then u and w are adjacent vertices in G and also dominated by v. Then each vertex of degree is 2 and $R S^{c}$ has $p-1$ vertices. Clearly, $\operatorname{diam}(G)$ $=1<2$. Hence it follows that $\operatorname{diam}(G) \leq 2$.
Remark: The converse of the theorem (2.9) is false. For the graph C_{4} or $C_{5}, \operatorname{diam}\left(C_{4}\right.$ or $\left.C_{5}\right)=2$ but $\gamma_{2 c s}\left(C_{4}\right.$ or $\left.C_{5}\right) \neq p-1$ and for the graph K_{2}, $\operatorname{diam}\left(K_{2}\right)=1$ but $\gamma_{2 c s}\left(K_{2}\right) \neq p-1$.
Theorem 2.10. Let G be a triangle free connected graph with minimum degree $\delta(G) \geq 2$. If $\gamma(G)=2$, then $\gamma_{2 c s}(G) \leq p-2$.
Proof: Let $R S^{c}$ be a center smooth 2-dominating set of G, so that $\gamma_{2 c s}(G)=\left|R S^{c}\right|$. Since $\gamma(G)=2$, then there exists a pair of vertices $x, y \in G$ such that $x(y)$ is adjacent to at most one vertex in S because G is a triangle free connected graph. We show that $\gamma_{2 c s}(G) \leq p-2$.We consider two cases.
Case (i): Each vertex in S is adjacent. Then it is clear that, every vertex in $V-S$ is adjacent to exactly one vertex in S. Since, every vertex in $R S^{c}$ is adjacent to exactly one vertex in S, then $N(v) \cap R S^{c}=R S^{c}$ for all $v \in S$. Thus, $\gamma_{2 c s}(G)=p-2$.
Case (ii): Each vertex in S is not adjacent. Then there exist a vertex u is adjacent to both vertex in S. Since, $\delta(G) \geq 2$, each vertex in G has atleast two neighbors, say r and s. If r is adjacent to exactly one vertex in S and u, then triangle is formed. It is a contradiction. Therefore, r is adjacent to exactly one vertex in S and s. Similarly, s is adjacent to another vertex in S and r. Clearly, $\quad r s \in E(G)$ and G formed a cycle C_{5}. Therefore, we have $\gamma_{2 c s}(G)<p-2$. In both the cases, $\gamma_{2 c s}(G) \leq p-2$.
Remark: The converse of the theorem 2.10 is false. For the graph $C_{\mathrm{n}}, n \geq 7, \gamma_{2 c s}\left(C_{\mathrm{n}}\right) \leq p-2$ but $\gamma\left(C_{\mathrm{n}}\right) \neq 2$.
Theorem 2.11. If a connected graph G with $\gamma(G)=1$, then $\gamma_{2 c s}(G)$ $=p-\gamma(G)$.
Proof: Since $\gamma(G)=1=|\{v\}|$, then a vertex v is adjacent to all the vertices in G. Therefore, the degree of v is $p-1$.Clearly, $v \in S$. It implies that $|S|=1$ and then $\left|R S^{c}\right|=p-1=p-\gamma(\mathrm{G})$.
Theorem 2.12. Let G be a connected graph with $\operatorname{diam}(G) \leq 3$. If $\gamma(G)=2$, then $\gamma_{2 c s}(G) \leq p-2$.
Proof: Case (i): If $\gamma(G)$ contains an independent vertex, then atleast one vertex u is adjacent to both the vertices in $\gamma(G)$. Let $R S^{c}$ be the $\gamma_{2 c s}$-set of G. Since $\operatorname{diam}(G) \leq 3$, then there exists a
vertex v is adjacent to one of the vertex in $\gamma(G)$. Therefore, $\gamma_{2 c s}(G)<p-2$.
Case (ii): Suppose $\gamma(G)$ does not contain an independent vertex, then the two vertices in $\gamma(G)$ are adjacent. From the theorem 2.10, in case (i), $\gamma_{2 c s}(G)=p-2$. In both the cases, $\gamma_{2 c s}(G) \leq p-2$.

Remark: The converse of the theorem 2.12 is false. For the graph $C_{7}, \gamma_{2 c s}\left(C_{7}\right) \leq p-2$ but $\gamma\left(C_{7}\right)=3 \neq 2$.
Theorem 2.13. If G is a connected graph with $\gamma(G)=2, d(u, v)$ >2, for every $u, v \in S$ and $\operatorname{diam}(G)>3$, then $\gamma_{2 c s}(G)=p-2$.
Proof: Since $\gamma(G)=2$, then there exists a pair of vertices $x, y \in V$ - S such that x is adjacent to one vertex and y is adjacent to another vertex in S because $d(u, v)>2$. Therefore, $\operatorname{diam}(G)=3$. So that, from the theorem (2.12), $\gamma_{2 c s}(G) \leq p-2$. It is a contradiction to $\operatorname{diam}(G)>3$.Hence the result.
Theorem 2.14. The Petersen graph G has $\gamma_{2 c s}(G)=6$.
Proof: Let G be a Petersen graph with 10 vertices and 15 edges. Then G consists of two cycles C_{1} and C_{2} such that the cycle C_{1} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{n}}\right\}$ is nested by the another cycle C_{2} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{\mathrm{n}}\right\}$ and each $u_{\mathrm{i}} \in C_{2}$ is adjacent with exactly one $v_{\mathrm{i}} \in C_{1}$. Let $R S^{c}$ be a $\gamma_{2 c s}$-set of G. Further, let $u_{\mathrm{s}} \in C_{2}$ is adjacent to more than one vertex in S. Since $d\left(u_{\mathrm{i}}\right)=d\left(v_{\mathrm{i}}\right)=3, \forall u_{\mathrm{i}}$, $v_{\mathrm{i}} \in G$ and $\gamma(G)=3$. Therefore $\gamma(G)=|S|=\Delta(G)=3$. Clearly, $R S^{c}=$ $V-S-\left\{u_{\mathrm{s}}\right\}$. It implies that $\gamma_{2 c s}(G)=p-\Delta(G)-1=6$.

III. PARTICULUR VALUE FOR CENTER-SMOOTH TWO RESTRICT COMPLEMENT DOMINATION NUMBER

In this section, we identify certain graphs for which $\gamma_{2 c s}(G)=p-$ 2 or $p-1$. For instance $\gamma_{2 c s}\left(B_{\mathrm{m}, \mathrm{n}}\right)=p-2$ or $\gamma_{2 c s}\left(K_{1, \mathrm{p}-1}\right.$ or $\left.P_{3}\right)=p-1$.
Theorem 3.1. Let G be a graph with cut edge $e=u v$ where u and v are only central vertices, $\delta(G)=1$ and $\gamma_{2 c s}(G)=p-|\{u, v\}|$. Suppose $R S^{c}$ is a $\gamma_{2 c s}$-set of G, then a cut edge is incident to all other edges in G.
Proof: By the assumption on $R S^{c},\left|R S^{c}\right|=p-2$ and hence $|S|=2$. Let $S=\{u, v\}$. Since u and v are the only central vertices of G, then u and v are in the dominating set of G. Suppose u is not adjacent to a vertex x in $R S^{c}$, then x is adjacent to v. Since, the degree of x is $1, x$ is not adjacent to any vertex in $R S^{c}$. Therefore $R S^{c}$ has only pendant vertices. Since u and v are only the central vertices in G. Then it is clear that, e be a central edge in G. So, e dominates all other edges in G. Therefore, e is a cut edge of G and e is incident to all other edges in G.
Corollary 3.2. Let G be a graph with cut edge $e=u v$ where u and v are only central vertices, $\delta(G)=1$. If $\gamma_{2 c s}(G)=p-|\{u, v\}|$, then $\gamma(G)+\gamma_{2 c s}(G)=p$.
Proof: Since u and v are the central vertices, then u and v are adjacent because $e=u v$ be a cut edge. Since, $\delta(G)=1$, then each vertex in $V-\{u, v\}$ is a pendent vertex (by the main theorem 3.1). Clearly, $\gamma(G)=2$. Therefore, $\gamma(G)+\gamma_{2 c s}(G)=2+p-|\{u, v\}|$ since $\gamma_{2 c s}(G)=p-|\{u, v\}|$. It implies that $\gamma(G)+\gamma_{2 c s}(G)=p$.
Corollary 3.3. Let G be a graph with cut edge $e=u v$ where u and v are only central vertices, $\delta(G)=1$ and $\gamma_{2 c s}(G)=p-|\{u, v\}|$, then each component of G is $K_{1, \mathrm{~m}}$ and $K_{1, \mathrm{n}}$.
Proof: From corollary 3.2, each vertex in $V-\{u, v\}$ is a pendent vertex. Since, u and v are only the central vertices in G. Then u is adjacent to m pendant vertices and v is adjacent to n pendant vertices because $\delta(G)=1$. From the main theorem 3.1, a cut edge
e is incident to all other edges in G. Clearly, G has $m+n+2$ vertices and $m+n+1$ edges. Therefore, G is $B_{\mathrm{m}, \mathrm{n}}$. Hence G has two components and each component of G is $K_{1, \mathrm{~m}}$ and $K_{1, \mathrm{n}}$ and the common edge of G is central edge.
Theorem 3.4. Let G be a graph with $\delta(G)=1$ and $l(G)=p-1$ where $l(G)$ is the number of end vertices in G. suppose $R S^{c}$ is $\gamma_{2 c s}$-set of G, then every vertex in S is adjacent to all vertices in $R S^{c}$. The bounds are sharp.
Proof: Let $R S^{c}$ be $\gamma_{2 c s}$-set of G. Further, let $v \in G$ be a central vertex or cut vertex in G. Therefore, v dominates all other vertices in G. Clearly, $v \in S$. Since, $V-\{v\}$ is the set of all end vertices in G. Clearly, v dominates all other end vertices in $V-\{v\}$ and $N(v)=l(G)$ and so $N(v) \cap l(G)=l(G) \geq 2$. Hence $R S^{c}$ - set has $p-1$ vertices since $l(G)=p-1$ and v is adjacent to all vertices in $R S^{c}$. The bounds are sharp for G is $K_{1, \mathrm{p}-1}$ or P_{3}.
Corollary 3.5. Let G be a graph with $\delta(G)=1$ and $l(G)=p-1$ where $l(G)$ is the number of end vertices in G. If $\gamma_{2 c s}(G)=p-1$ then $\gamma_{2 c s}(G)=\beta_{0}(G)$.
Proof: Since $\gamma_{2 c s}(G)=p-1=\ell(G)$, it is clear that $R S^{c}$ has only pendant vertices in G which are independent. Hence $\beta_{0}(G)=p-1$ and so $\gamma_{2 c s}(G)=\beta_{0}(G)$.
Corollary 3.6. Let G be a graph with $\delta(G)=1$ and $\downarrow(G)=p-1$ where $l\left(G\right.$ is the number of end vertices in G. if $\gamma_{2 c s}(G)=p-1$ then \bar{G} is disconnected.
Proof: From the main theorem 3.4, G is $K_{1, \mathrm{p}-1}$ or P_{3}. We know that non adjacent vertices in G are adjacent in \bar{G}. Therefore, \bar{G} is $K_{\mathrm{p}},(p \geq 2)$ with an isolated vertex. Hence, \bar{G} is not a connected graph.
Theorem 3.7. Let G be a graph with cut edge $e=u v$ where u and v are only central vertices, $\delta(G)=1$. If $\gamma_{2 c s}(G)=p-|\{u, v\}|$, then $\gamma_{2 c s}(G)=\beta_{0}(G)$.
Proof: From the theorem 3.1, we have $R S^{c}$ has only pendent vertices which are independent. Therefore, $\beta_{0}(G)=p-|\{u, v\}|$. Hence, $\gamma_{2 c s}(G)=\beta_{0}(G)$.
Theorem 3.8. Let G be a graph with $\delta(G)=1$ and $\mathrm{l}(G)=p-1$ where $\mathrm{l}(G)$ is the number of end vertices in G. Then the following are equivalent:
(i)

$$
\begin{array}{ll}
\text { (i) } & \gamma(G)+\gamma_{2 c s}(G)=p \\
\text { (ii) } & \gamma(G)=1 \text { and } \gamma_{2 c s}(G)=p-1 \\
\text { (iii) } & G \text { is } K_{1, \mathrm{p}-1} \text { or } P_{3}
\end{array}
$$

Proof: (i) \Leftrightarrow (ii) follows from the theorem 3.5. We prove
(ii) \Rightarrow (iii). Let $R S^{c}$ be a $\gamma_{2 c s}$-set of a graph G. Then $\left|R S^{c}\right|=p-1$ and $|S|=1$. Let $S=\{v\}$. Since, every vertex in S is adjacent to all vertices in $\left|R S^{c}\right|$ and $l(G)=p-1$. Now, we claim that each vertex in $R S^{c}$ is pendent vertex. If not there exists a vertex $u \in R S^{c}$ is adjacent to x and y where $x, y \in R S^{c}$. Now clearly, $R S^{c}$ has less than $p-1$ vertices. It is a contradiction to $\left|R S^{c}\right|=p-1$. Hence, every vertex in $R S^{c}$ is pendent vertex and so G is $K_{1, \mathrm{p}-1}$ or P_{3}.
We prove that (iii) \Rightarrow (ii). Since G has a universal vertex v. Therefore, $\gamma(G)=1$. Clearly, a vertex v is adjacent to all other vertices in G. Since, $V-\{v\}$ be only the end vertices and $v \in S$. Clearly, $R S^{c}$ has $V-\{v\}$ vertices and so $R S^{c}$ has $p-1$ vertices. Hence, $\gamma_{2 c s}(G)=p-1$.
Theorem 3.9. If a connected graph G has exactly one vertex of degree $p-1$, then $\gamma_{2 c s}(G)=\gamma_{2 c s}(\bar{G})+\Delta(G)$.
Proof: Let G be a connected graph. Since, G has exactly one vertex of degree $p-1$, then G is $K_{1, \mathrm{p}-1}$ by the theorem 3.8 and
$\gamma_{2 c s}(G)=p-1$. In \bar{G}, adjacent vertices in G are non-adjacent vertices in \bar{G}. Hence, \bar{G} is disconnected. That is, $\bar{G}=K_{\mathrm{p}}$ with an isolated vertex. Therefore, $\gamma_{2 c s}(\bar{G})=0$. Hence, $\gamma_{2 c s}(G)=\gamma_{2 c s}(\bar{G})$ $+\Delta(G)$.

IV. CONCLUSION

In this paper, S_{1} - eccentricity of a vertex and center smooth set have been defined. Also, the center smooth graph and restrict S^{c} set have been introduced. The center smooth $2-R S^{\mathrm{c}}$ dominating set and center smooth $2-R S^{\text {c }}$ domination number of some families of graphs were enumerated.

REFERENCES

[1] A. Anto Kinsley and J. Joan Princiya, "Center Smooth One Complement Domination of Some Graphs," in Global Journal of Pure and Applied Mathematics, ISSN:: 0973-1768, Volume 17, Number 1(2021), pp.37-46..
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, New York, (1990).
[3] F. Buckley, Z. Miller, and P. J. Slater, On graphs containing a given graph as center, Journal Of Graph Theory, 5(4): 427-434, (1981).
[4] Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi (2006).
[5] R. Ram Kumar, Kannan Balakrishnan, Manoj Changat, A. Sreekumar and Prasanth G. Narasimha-Shenoi, On The Center Sets and Center Numbers of

Some Graph Classes,Discrete Mathematics, arXIV:1312.3182v1 [cs.DM], (2013).
[6] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, INC (1998).

AUTHORS
First Author: Dr. A. Anto Kinsley, M.Sc., M.Phil., Ph.D., M.Tech. Associate Professor,
Department of Mathematics,
St. Xavier's College (Autonomous), Palayamkottai - 627002
Affiliated to Manonmaniam Sundaranar University,
Tirunelveli-627012, India.
Email Address: antokinsley@yahoo.com
Second Author: J. Joan Princiya,
Research Scholar,
Department of Mathematics,
St. Xavier's College (Autonomous), Palayamkottai - 627002
Affiliated to Manonmaniam Sundaranar University,
Tirunelveli - 627012, India.
Email Address: joaprincy@gmail.com

