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Abstract- Let S be a dominating set of a graph G and RS®c V(G).
The set RSCis called a center-smooth 2-RS°® set of a center smooth
graph G if |[N(v)NRSY > 2 for every vertex veS. The center-
smooth 2-RS® number y2(G) of a graph G is the number of
vertices in a center-smooth 2-RS¢ set of G. In this paper, we

introduce the new concept center-smooth 2-RS®number. The

center-smooth 2-RS®number v,(G) of G is the number of
vertices in a center-smooth 2-RS¢set of G. Some results on this
new parameter are established and y,(G) is computed for some
special graphs and also proved that y,.(G) = 6 for Petersen graph
G. A result is proved for a triangle free connected graph G with
minimum degree 8(G) > 2. The following results are also proved.
(i). If a connected graph G has exactly one vertex of degree p -1,
then y,,(G) = 126(G) + A(G) and (ii). Let G be a graph with cut
edge e = uv where u and v are only central vertices, 6(G) = 1. If

V2s(G) = P - {U, v}, then y(G) + v2,(G) = p.
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I. INTRODUCTION

e consider only finite simple undirected connected graphs.

For the graph G, V(G) denotes its vertex set and E(G)
denotes its edge set. As usual, p=|V| and g= |E| denote the number
of vertices and edges of a graph G, respectively. For a connected
graph G(V, E)and a pair u, v of vertices of G, the distance d(u, v)
between u and v is the length of a shortest u-v path in G. The
degree of a vertex u, denoted by deg(u) is the number of vertices
adjacent to u. A vertex u of a graph G is called a universal vertex
if u is adjacent to all other vertices of G. A graph G is universal
graph if every vertex in G is universal vertex. For example, the
complete graph K, is universal graph. The set of all vertices
adjacent to u in a graph G, denoted by N(u), is the neighborhood
of the vertex u. The eccentricity e(u) of a vertex u is the distance
to a vertex farthest from u. Thus, e(u) = max{ d(u, v)/ive V(G)}.
A vertex v is an eccentric vertex of u if e(u)= d(u, v). The radius
r(G) is the minimum eccentricity of the vertices, whereas the
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diameter diam(G) is the maximum eccentricity. The center of G,
C(G)={ veV(G)/e(v)=r(G)}.

Definition 1.1. The S-eccentricity es(v) of a vertex v in Gis
max(d(v,x)). The S-center of G is Cs (G) = {veV|es(v) <

es(x) for every x€V}.

Example 1.1. In figure 1, S ={u1, us, ug} and V - S ={ Uz, U, Us,
uz}. The S-eccentricity eg(u1) = 3, eg(U2) =1, eg(us) = 3, eg(Us)
=3, eg(Us) = 3, es(Us) = 2, eg(u7) = 3. Then the S-center Cs (G) =
{uz2}.

L1
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Figure 1. Center smooth graph
Definition 1.2. The S;-eccentricity, es, (v) of a vertex v in S is

max (d(v,x)). The S;center of G is (5, (G) = {veV | es,(v) <
XEV-S

es, (x)for all xeV}.

Example 1.2. In figure 1, S = {uy, us, us} and V- S = { Uz, Ua, Us,
u7}. The Si-eccentricity e, (U1)=3,e, (U2) =1, eg, (Us) = 3, e, (U4)
=3, e, (Us) = 3, eg, (Us) = 2, e5,(U7) = 3. Then the Si-center,

Cs, (G) = {uz}.

Definition 1.3. Let G be a graph and S be a proper set of G. G is
called a center-smooth graph if Cs (G) = (s, (G) and the set S is
said to be a center-smooth set.

Example 1.3. In figure 1, Cs (G) = {uz} = C;, (G).

Definition 1.4. A set S is called 1-dominating set if for every

vertex in V-S, there exists exactly one neighbor in S. The
minimum cardinality of a 1-dominating set is denoted by y, (G).
Definition 1.5. Let S be a dominating set of center smooth graph
G. Then the Restrict-S¢(RSF) set of a graph G is defined by RS°=
{v ERSS; INWw)NS|=1
v & RS INwW)NS|>1
denoted by nR(G). If RS® - set is independent set then the number
of RS®- set of G is denoted by niR(G).

Definition 1.6. Let S be a dominating set of G and RS®c V(G).

Then the set RS¢is called a center smooth 1°dominating set of a

and the number of RS® - set of G is
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center smooth graph G if for every vertex in S° has at least one
neighbor in S. The number of vertices in RS® of a center smooth
graph G is called center smooth 1¢ domination number and it is
denoted by y;cs(G).

Il. RESULTS ON CENTER-SMOOTH TWO RESTRICT
COMPLEMENT DOMINATION

Definition 2.1. Let S be a dominating set of G. Then RS®c V(G)
is a center-smooth 2-RS® set of a center smooth graph G if
IN(v)NRS| > 2 for every vertex veS. The center-smooth 2-RS°
number v2c5(G) of a graph G is the number of vertices in a center-
smooth 2-RS°¢ set of G.

Proposition 2.2. Let G be a graph with p > 2 vertices. If a
universal vertex v of degree p - 1 then yas(G) =p - 1.

Proof: Let v be a universal vertex of degree p -1. Then it is clear
that, v is adjacent to all other vertices in G. Since p > 2, then at
least two or more vertices are adjacent to v in G. Thus,
IN(V)NRS®| > 2. Therefore, every vertex in G not in S is yacs-Set of
G. Hence, y2e5(G) =p - 1.

Theorem 2.3. If there exists exactly one vertex of even degree
in atree T with p > 2 vertices, then yocs(T) = p - 1 and the bounds
are sharp.

Proof: Let v be a vertex of even degree and all other vertices
having odd degree. Further, let U be the set of all odd degree
vertices in T. Let RS be a yxs-set of T and contains only the
vertices in U. Suppose veRS¢, then a vertex in U is adjacent to v
and N(v) N RS® = ¢. It is a contradiction. Therefore, veS and
N(v) N RS® = RS®> 2. Hence y2e5(T) = p -1 and the bounds are
sharp for T=Psor Ky, p1, p=5,7,9...

Corollary 2.4. If there exists exactly one vertex of even degree
in a tree T with p>2 vertices, then yaes(T) = y£cs(T)

Proof: From the main theorem (2.3), T=P3 or Ky, p1, p =5, 7,
9...Clearly, yacs(T) =y{cs(T)= p-1.

Theorem 2.5. If every vertex v in a tree T has an odd degree,
then y2es(T) = p - k where k is the number of vertices which are
having maximum degree in a tree T.

Proof: Assume that there exists a vertex v in a tree T has odd
degree. Then an edge xy e E(T) with N(v)= xeRS® and yg¢RS®
and we can choose xie RS°NN(y) with xi# x. Then N(x1) has
even degree, as is [N(x1) NRS® |. Since yeN(x1) with ygRS®, we
can choose a vertex xi#y where y1eN(x1) but x; €RSE. Iterating
this procedure, we could obtain an arbitrarily long path x, y, X,
Y1, Xz, Ya,...in T with each xjeRS¢ and each yigRSE. Thus, yacs(T)
# p-k. This is a contradiction. Hence each vertex v of odd degree,
then yaes(T) =p-k.

Theorem 2.6. Let G be a graph with p>2 and 6(G) =A(G) =p-1
then v2es(G)=p-1 if and only if G is K.

Proof: Let G be any graph. Assume that, G has 6(G) =A(G) =p-1.
Then it is clear that each vertex in G is adjacent to all vertices in
G. Since p>2, every vertex v in G is adjacent to at most p-1
vertices in G. Since, RS®-set has p-1 vertices, so that every vertex
v dominates N(v) and the vertices in V-N(v) dominate themselves.
Thus, G is K,. Conversely, suppose G is Kp. Then any vertex
veV(G) dominate all other vertices in G. So that §(G) =A(G) =p-
1. Since p>2, each vertex v is adjacent to two or more vertices in
G. Hence RS®-set has p-1 vertices and S0 yacs(G) = p-1.

Theorem 2.7. Let G be a graph with §(G) =A(G)= 2 then y2(G)
< p-lifandonly if G is C,.
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Proof: Let G be any graph and §(G) =A(G) = 2.Then each vertex
in G dominates 2 vertices and p =g. Suppose, y2cs(G)< p-1. Then
RS® contains atleast two vertices. Hence, G forms a cycle C,.
Conversely, suppose G is Cp. Then each vertex is adjacent to 2
vertices in G. Therefore degree of each vertex is 2. That
is, 6(G)=A(G)=2. Let RS® be a yacs -set of G. If |S| =1 then |RS|
=p-1. If |S| >1 then |RS¢| <p-1. Thus, it follows that y2cs(G) < p-1.
Theorem 2.8. For any graph G =Ky, p-1, Y2¢s(G) = ¥y ¢s(G).

Proof: Let RS® be a y.s-set which contains only a set of end
vertices in G and S = {v} be a dominating set of G. Clearly, the
vertex v is an universal vertex of G .Then RSN N(v) = RS¢> 2.
Hence v2¢(G) = p -1 and so yycs(G) = p - 1. Therefore, it follows
that, y2c5(G) = y1¢s(G).

Theorem 2.9. Let G be a graph with §(G) =1 or 2. If y2(G) = p-
1 then diam(G) < 2.

Proof: Since yas(G) = p -1, then p > 2. Let S = {v} be a
dominating set of G. If u and w be vertices of G such that degrees
of u and w are equal to 1. Then u and w are end vertices in G and
also v dominates u and w. Since RS®-set has p-1 vertices and
diam(G) =2. If degree of u and w is not equal to 1, then u and w
are adjacent vertices in G and also dominated by v. Then each
vertex of degree is 2 and RS® has p - 1 vertices. Clearly, diam(G)
=1 < 2. Hence it follows that diam(G) < 2.

Remark: The converse of the theorem (2.9) is false. For the
graph C4 or Cs, diam(C4 or Cs) =2 but y2,s(Cs or Cs) # p-1 and
for the graph K, diam(Ky) =1 but y2cs(K2) #p-1.

Theorem 2.10. Let G be a triangle free connected graph with
minimum degree 6(G) > 2. If y(G) =2, then y5(G) < p-2.

Proof: Let RS® be a center smooth 2-dominating set of G, so that
v2¢s(G) =|RS|. Since y(G) =2, then there exists a pair of vertices
X, yeG such that x(y) is adjacent to at most one vertex in S
because G is a triangle free connected graph. We show that
v2¢s(G) < p-2.We consider two cases.

Case (i): Each vertex in S is adjacent. Then it is clear that, every
vertex in V - S is adjacent to exactly one vertex in S. Since, every
vertex in RS® is adjacent to exactly one vertex in S, then
N(v)NRS=RS¢for all veS. Thus, y2:5(G) =p - 2.

Case (ii): Each vertex in S is not adjacent. Then there exist a
vertex u is adjacent to both vertex in S. Since, §(G) > 2, each
vertex in G has atleast two neighbors, say r and s. If r is adjacent
to exactly one vertex in S and u, then triangle is formed. It is a
contradiction. Therefore, r is adjacent to exactly one vertex in S
and s. Similarly, s is adjacent to another vertex in S and r.
Clearly, rseE(G) and G formed a cycle Cs. Therefore, we have
v2cs(G) < p - 2. In both the cases, y2s(G) < p - 2.

Remark: The converse of the theorem 2.10 is false. For the
graph Cn N> 7, y2es(Cn) <p - 2 but ¥(Cr) # 2.

Theorem 2.11. If a connected graph G with y(G) =1, then y2(G)
=p-y(G).

Proof: Since y(G) =1= |{v}|, then a vertex v is adjacent to all the
vertices in G. Therefore, the degree of v is p -1.Clearly, veS. It
implies that |S| = 1 and then |[RS¢|=p -1 =p -y(G).

Theorem 2.12. Let G be a connected graph with diam(G) < 3. If
¥(G) =2, then ya5(G) < p-2.

Proof: Case (i): If y(G) contains an independent vertex, then
atleast one vertex u is adjacent to both the vertices in y(G). Let
RS be the yas-set of G. Since diam(G) < 3, then there exists a
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vertex v is adjacent to one of the vertex in y(G). Therefore,
Y2es(G) <p - 2.

Case (ii): Suppose y(G) does not contain an independent vertex,
then the two vertices in y(G) are adjacent. From the theorem
2.10, in case (i), y2¢s(G)=p - 2. In both the cases, v2e(G) <p - 2.
Remark: The converse of the theorem 2.12 is false. For the
graph Cr, y2s(C7) <p - 2 but y(C7) =3 # 2.

Theorem 2.13. If G is a connected graph with y(G) = 2, d(u, v)
> 2, for every u, veS and diam(G) > 3, then y2(G) =p - 2.
Proof: Since y(G) = 2, then there exists a pair of vertices X,y € V
- S such that x is adjacent to one vertex and y is adjacent to
another vertex in S because d (u, v)>2. Therefore, diam(G)=3. So
that, from the theorem (2.12), y2cs(G) < p - 2. It is a contradiction
to diam(G) > 3.Hence the result.

Theorem 2.14. The Petersen graph G has y2¢s(G) =6.

Proof: Let G be a Petersen graph with 10 vertices and 15 edges.
Then G consists of two cycles C; and C; such that the cycle C;
with vertex set {vi1, V2,.._Va} is nested by the another cycle C, with
vertex set {us, Uz, Un} and each u;eC; is adjacent with exactly
one vieCy. Let RS® be a yxs-set of G. Further, let us €C; is
adjacent to more than one vertex in S. Since d(uj)= d(vi)= 3, Vui,
vieG and y(G)=3. Therefore y(G) =| S| = A(G) =3. Clearly, RS =
V — S -{us}. It implies that y2cs(G) =p-A(G)-1=6.

I1l. PARTICULUR VALUE FOR CENTER-SMOOTH
TWO RESTRICT COMPLEMENT DOMINATION
NUMBER

In this section, we identify certain graphs for which ys(G) = p -
2 or p-1. For instance yacs(Bm,n) = P -2 OF y2es(K1, p-1 OF P3) = p-1.
Theorem 3.1. Let G be a graph with cut edge e = uv where u
and v are only central vertices, §(G) =1 and y2e(G) = p - [{ u, V}.
Suppose RS® is a yas-set of G, then a cut edge is incident to all
other edges in G.

Proof: By the assumption on RS¢, [RS¢| = p - 2 and hence |S| = 2.
Let S = {u, v}. Since u and v are the only central vertices of G,
then u and v are in the dominating set of G. Suppose u is not
adjacent to a vertex x in RS, then x is adjacent to v. Since, the
degree of x is 1, x is not adjacent to any vertex in RS®. Therefore
RS® has only pendant vertices. Since u and v are only the central
vertices in G. Then it is clear that, e be a central edge in G. So, e
dominates all other edges in G. Therefore, e is a cut edge of G
and e is incident to all other edges in G.

Corollary 3.2. Let G be a graph with cut edge e = uv where u
and v are only central vertices, §(G) =1. If y2s(G) = p -[{ u, v},
then y(G) + y2cs(G) = p.

Proof: Since u and v are the central vertices, then u and v are
adjacent because e = uv be a cut edge. Since, 6(G) =1, then each
vertex in V-{u, v} is a pendent vertex (by the main theorem 3.1).
Clearly, y(G)=2. Therefore, y(G) + y25(G) = 2 + p-|{ u, v}|since
v2es(G) = p-[{ u, V}|. It implies that ¥ (G) + yacs(G) = p.

Corollary 3.3. Let G be a graph with cut edge e = uv where u
and v are only central vertices, §(G) =1 and y2s(G) = p - |{u, v},
then each component of G is Ki, m and Ky, n.

Proof: From corollary 3.2, each vertex in V -{u, v} is a pendent
verteX. Since, u and v are only the central vertices in G. Then u is
adjacent to m pendant vertices and v is adjacent to n pendant
vertices because 6(G) =1. From the main theorem 3.1, a cut edge
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e is incident to all other edges in G. Clearly, G has m+n+2
vertices and m +n +1 edges. Therefore, G is Bm, n. Hence G has
two components and each component of G is K;, m and Ky, , and
the common edge of G is central edge.
Theorem 3.4. Let G be a graph with §(G)=1 and |(G)=p-1 where
1. (G) is the number of end vertices in G. suppose RS is yzcs-set of
G, then every vertex in S is adjacent to all vertices in RS¢. The
bounds are sharp.
Proof: Let RS® be ys-set of G. Further, let veG be a central
vertex or cut vertex in G. Therefore, v dominates all other
vertices in G. Clearly, veS. Since, V-{v} is the set of all end
vertices in G. Clearly, v dominates all other end vertices in V-{v}
and N(v)= [(G) and so N(v) N |(G)= |(G) > 2. Hence RS° - set has
p -1 vertices since |(G) =p-1 and v is adjacent to all vertices in
RSE. The bounds are sharp for G is Ky, p-1 of Pa.
Corollary 3.5. Let G be a graph with §(G) =1 and |(G) = p-1
where |(G) is the number of end vertices in G. If y2(G) =p -1
then v2es(G) = Bo(G).
Proof: Since y2s(G) = p -1= [(G), it is clear that RS® has only
pendant vertices in G which are independent. Hence £,(G) = p -1
and so yacs(G) = Bo(G).
Corollary 3.6. Let G be a graph with §(G) =1 and |(G) =p -1
where |(G is the number of end vertices in G. if y25(G) = p-1
then G is disconnected.
Proof: From the main theorem 3.4, G is Ky, p1 or P3 .We know
that non adjacent vertices in G are adjacent in G. Therefore, G is
Ko, (p > 2) with an isolated vertex. Hence, G is not a connected
graph.
Theorem 3.7. Let G be a graph with cut edge e = uv where u and
v are only central vertices, §(G) =1. If y2s(G) = p - [{ u, v}, then
Y2es(G) = Bo(G).
Proof: From the theorem 3.1, we have RS® has only pendent
vertices which are independent. Therefore, 5,(G) = p - |{u, V}.
Hence, y2¢5(G) = Bo(G).
Theorem 3.8. Let G be a graph with §(G) =1 and [(G)=p-1
where [(G) is the number of end vertices in G. Then the
following are equivalent:

(i) ¥(G) + 72s(G) = p.

(i) y(G) =1 and y2(G) = p -1.

(III) Gis Kl, p-10r Ps.

Proof: (i) & (ii) follows from the theorem 3.5. We prove

(if) = (iii). Let RS® be a yacs-set of a graph G. Then RS =p -1
and |S| = 1. Let S ={v}. Since, every vertex in S is adjacent to all
vertices in |RS¢| and |(G)=p - 1. Now, we claim that each vertex
in RS® is pendent vertex. If not there exists a vertex u € RS® is
adjacent to x and y where X, y € RS®. Now clearly, RS® has less
than p - 1 vertices. It is a contradiction to |[RS®= p-1. Hence,
every vertex in RS® is pendent vertex and so G is Ky, p.1 0r Ps.

We prove that (iii)= (ii). Since G has a universal vertex v.
Therefore, y(G) =1. Clearly, a vertex v is adjacent to all other
vertices in G. Since, V-{v} be only the end vertices and veS.
Clearly, RS has V-{v} vertices and so RS® has p - 1 vertices.
HenCE, ’Ych(G) =p -1.

Theorem 3.9. If a connected graph G has exactly one vertex of
degree p - 1, then yas(G) = vaes(G) + A(G).

Proof: Let G be a connected graph. Since, G has exactly one
vertex of degree p-1, then G is Ky, 1 by the theorem 3.8 and
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v2(G) = p - 1. In G, adjacent vertices in G are non-adjacent
vertices in G. Hence, G is disconnected. That is, G =K, with an
isolated vertex. Therefore, yaes(G)=0. Hence, y2cs(G) = y2es(G)
+A(G).

IV. CONCLUSION

In this paper, Si - eccentricity of a vertex and center smooth set
have been defined. Also, the center smooth graph and restrict S¢
set have been introduced. The center smooth 2- RS dominating
set and center smooth 2 - RS® domination number of some
families of graphs were enumerated.
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