Center Smooth Two Restrict Complement Domination on Graphs

A. Anto Kinsley*, J. Joan Princiya**

*Department of mathematics, St. Xavier's College (Autonomous), Palayamkottai. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India.

**Research Scholar, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India.

Abstract- Let *S* be a dominating set of a graph *G* and $RS^c \subseteq V(G)$. The set RS^c is called a center-smooth 2- RS^c set of a center smooth graph G if $|N(v) \cap RS^c| \ge 2$ for every vertex $v \in S$. The centersmooth 2-RS^c number $\gamma_{2cs}(G)$ of a graph G is the number of vertices in a center-smooth $2-RS^c$ set of G. In this paper, we introduce the new concept center-smooth 2-RS^C number. The center-smooth 2-RS^c number $\gamma_{2cs}(G)$ of G is the number of vertices in a center-smooth 2-RS^c set of G. Some results on this new parameter are established and $\gamma_{2cs}(G)$ is computed for some special graphs and also proved that $\gamma_{2cs}(G) = 6$ for Petersen graph G. A result is proved for a triangle free connected graph G with minimum degree $\delta(G) \ge 2$. The following results are also proved. (i). If a connected graph G has exactly one vertex of degree p -1, then $\gamma_{2cs}(G) = \gamma_{2cs}(\overline{G}) + \Delta(G)$ and (ii). Let G be a graph with cut edge e = uv where u and v are only central vertices, $\delta(G) = 1$. If $\gamma_{2cs}(G) = p - |\{u, v\}|, \text{ then } \gamma(G) + \gamma_{2cs}(G) = p.$

Keywords- Center smooth graph, *Restrict* S^c -set, Center smooth 1^c domination number, center smooth 2-*RS*^c number.

Mathematics Subject Classification 2010: 05C12.

I. INTRODUCTION

We consider only finite simple undirected connected graphs. For the graph G, V(G) denotes its vertex set and E(G)denotes its edge set. As usual, p=|V| and q=|E| denote the number of vertices and edges of a graph G, respectively. For a connected graph G(V, E) and a pair u, v of vertices of G, the distance d(u, v)between u and v is the length of a shortest u-v path in G. The degree of a vertex u, denoted by deg(u) is the number of vertices adjacent to u. A vertex u of a graph G is called a universal vertex if u is adjacent to all other vertices of G. A graph G is universal graph if every vertex in G is universal vertex. For example, the complete graph K_p is universal graph. The set of all vertices adjacent to u in a graph G, denoted by N(u), is the neighborhood of the vertex u. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. Thus, $e(u) = max\{d(u, v)/v \in V(G)\}$.

A vertex v is an *eccentric vertex* of u if e(u) = d(u, v). The radius r(G) is the minimum eccentricity of the vertices, whereas the

diameter diam(G) is the maximum eccentricity. The center of *G*, $C(G) = \{ v \in V(G)/e(v) = r(G) \}.$

Definition 1.1. The *S*-eccentricity $e_S(v)$ of a vertex v in *G* is $\max_{x\in S}(d(v,x))$. The *S*-center of *G* is $C_S(G) = \{v \in V \mid e_S(v) \le e_S(x) \text{ for every } x \in V\}.$

Example 1.1. In figure 1, $S = \{u_1, u_3, u_6\}$ and $V - S = \{u_2, u_4, u_5, u_7\}$. The *S*-eccentricity $e_S(u_1) = 3$, $e_S(u_2) = 1$, $e_S(u_3) = 3$, $e_S(u_4) = 3$, $e_S(u_5) = 3$, $e_S(u_6) = 2$, $e_S(u_7) = 3$. Then the *S*-center $C_S(G) = \{u_2\}$.

Figure 1. Center smooth graph

Definition 1.2. The S_1 -eccentricity, $e_{S_1}(v)$ of a vertex v in S is $\max_{x \in V-S} (d(v, x))$. The S_1 center of G is $C_{S_1}(G) = \{v \in V \mid e_{S_1}(v) \le e_{S_1}(x)$ for all $x \in V\}$.

Example 1.2. In figure 1, $S = \{u_1, u_3, u_6\}$ and $V - S = \{u_2, u_4, u_5, u_7\}$. The S_1 -eccentricity $e_{S_1}(u_1)=3$, $e_{S_1}(u_2)=1$, $e_{S_1}(u_3)=3$, $e_{S_1}(u_4)=3$, $e_{S_1}(u_5)=3$, $e_{S_1}(u_6)=2$, $e_{S_1}(u_7)=3$. Then the S_1 -center, $C_{S_1}(G) = \{u_2\}$.

Definition 1.3. Let *G* be a graph and *S* be a proper set of *G*. *G* is called a *center-smooth graph* if $C_S(G) = C_{S_1}(G)$ and the set *S* is said to be a *center-smooth set*.

Example 1.3. In figure 1, $C_S(G) = \{u_2\} = C_{S_1}(G)$.

Definition 1.4. A set S is called 1-*dominating set* if for every vertex in V-S, there exists exactly one neighbor in S. The minimum cardinality of a 1-dominating set is denoted by $\gamma_1(G)$.

Definition 1.5. Let *S* be a dominating set of center smooth graph *G*. Then the *Restrict-S*^c(*RS*^c) set of a graph *G* is defined by *RS*^c= $(v \in RS^c; |N(v) \cap S| = 1)$

 $v \notin RS^c$; $|N(v) \cap S| > 1$ and the number of RS^c - set of *G* is denoted by nR(G). If RS^c - set is independent set then the number

of RS^c - set of G is denoted by niR(G).

Definition 1.6. Let *S* be a dominating set of *G* and $RS^c \subseteq V(G)$. Then the set RS^c is called a *center smooth* 1^c *dominating set* of a center smooth graph *G* if for every vertex in *S*^c has at least one neighbor in *S*. The number of vertices in *RS*^c of a center smooth graph *G* is called *center smooth* 1^c *domination number* and it is denoted by $\gamma_1^c cs(G)$.

II. RESULTS ON CENTER-SMOOTH TWO RESTRICT COMPLEMENT DOMINATION

Definition 2.1. Let *S* be a dominating set of *G*. Then $RS^c \subseteq V(G)$ is a center-smooth 2-*RS*^c set of a center smooth graph *G* if $|N(v) \cap RS^c| \ge 2$ for every vertex $v \in S$. The center-smooth 2-*RS*^c number $\gamma_{2cs}(G)$ of a graph *G* is the number of vertices in a center-smooth 2-*RS*^c set of *G*.

Proposition 2.2. Let *G* be a graph with p > 2 vertices. If a universal vertex *v* of degree p - 1 then $\gamma_{2cs}(G) = p - 1$.

Proof: Let *v* be a universal vertex of degree p - 1. Then it is clear that, *v* is adjacent to all other vertices in *G*. Since p > 2, then at least two or more vertices are adjacent to *v* in *G*. Thus, $|N(v) \cap RS^c| \ge 2$. Therefore, every vertex in *G* not in *S* is γ_{2cs} -set of *G*. Hence, $\gamma_{2cs}(G) = p - 1$.

Theorem 2.3. If there exists exactly one vertex of even degree in a tree *T* with p > 2 vertices, then $\gamma_{2cs}(T) = p - 1$ and the bounds are sharp.

Proof: Let *v* be a vertex of even degree and all other vertices having odd degree. Further, let *U* be the set of all odd degree vertices in *T*. Let RS^c be a γ_{2cs} -set of *T* and contains only the vertices in *U*. Suppose $v \in RS^c$, then a vertex in *U* is adjacent to *v* and $N(v) \cap RS^c = \phi$. It is a contradiction. Therefore, $v \in S$ and $N(v) \cap RS^c = RS^c \ge 2$. Hence $\gamma_{2cs}(T) = p$ -1 and the bounds are sharp for $T = P_3$ or $K_{I, p-1}$, p = 5, 7, 9...

Corollary 2.4. If there exists exactly one vertex of even degree in a tree *T* with *p*>2 vertices, then $\gamma_{2cs}(T) = \gamma_1^c cs(T)$

Proof: From the main theorem (2.3), $T=P_3$ or $K_{I, p-I}$, p = 5, 7, 9...Clearly, $\gamma_{2cs}(T) = \gamma_1^c cs(T) = p-1$.

Theorem 2.5. If every vertex *v* in a tree *T* has an odd degree, then $\gamma_{2cs}(T) = p - k$ where *k* is the number of vertices which are having maximum degree in a tree *T*.

Proof: Assume that there exists a vertex v in a tree T has odd degree. Then an edge $xy \in E(T)$ with $N(v) = x \in RS^c$ and $y \notin RS^c$ and we can choose $x_1 \in RS^c \cap N(y)$ with $x_1 \neq x$. Then $N(x_1)$ has even degree, as is $|N(x_1) \cap RS^c|$. Since $y \in N(x_1)$ with $y \notin RS^c$, we can choose a vertex $x_1 \neq y$ where $y_1 \in N(x_1)$ but $x_1 \notin RS^c$. Iterating this procedure, we could obtain an arbitrarily long path x, y, x_1 , y_1 , x_2 , y_2 ,...in T with each $x_i \in RS^c$ and each $y_i \notin RS^c$. Thus, $\gamma_{2cs}(T) \neq p$ -k.

Theorem 2.6. Let *G* be a graph with p>2 and $\delta(G) = \Delta(G) = p-1$ then $\gamma_{2cs}(G) = p-1$ if and only if *G* is K_p .

Proof: Let *G* be any graph. Assume that, *G* has $\delta(G) = \Delta(G) = p-1$. Then it is clear that each vertex in *G* is adjacent to all vertices in *G*. Since p>2, every vertex *v* in *G* is adjacent to at most p-1 vertices in *G*. Since, RS^c -set has p-1 vertices, so that every vertex *v* dominates N(v) and the vertices in V-N(v) dominate themselves. Thus, *G* is K_p . Conversely, suppose *G* is K_p . Then any vertex $v \in V(G)$ dominate all other vertices in *G*. So that $\delta(G) = \Delta(G) = p-1$. Since p>2, each vertex *v* is adjacent to two or more vertices in *G*. Hence RS^c -set has p-1 vertices and so $\gamma_{2cs}(G) = p-1$.

Theorem 2.7. Let G be a graph with $\delta(G) = \Delta(G) = 2$ then $\gamma_{2cs}(G) \leq p-1$ if and only if G is C_p .

Proof: Let *G* be any graph and $\delta(G) = \Delta(G) = 2$. Then each vertex in *G* dominates 2 vertices and p = q. Suppose, $\gamma_{2cs}(G) \le p-1$. Then RS^c contains atleast two vertices. Hence, *G* forms a cycle C_p . Conversely, suppose *G* is C_p . Then each vertex is adjacent to 2 vertices in *G*. Therefore degree of each vertex is 2. That is, $\delta(G) = \Delta(G) = 2$. Let RS^c be a γ_{2cs} -set of *G*. If |S| = 1 then $|RS^c|$ = p-1. If |S| > 1 then $|RS^c| < p-1$. Thus, it follows that $\gamma_{2cs}(G) \le p-1$. Theorem 2.8. For any graph $C = K_1 + \alpha_1 K_2 K_3$

Theorem 2.8. For any graph $G = K_{l, p-l}$, $\gamma_{2cs}(G) = \gamma_1^c cs(G)$.

Proof: Let RS^c be a γ_{2cs} -set which contains only a set of end vertices in *G* and $S = \{v\}$ be a dominating set of *G*. Clearly, the vertex *v* is an universal vertex of *G*. Then $RS^c \cap N(v) = RS^c \ge 2$. Hence $\gamma_{2cs}(G) = p$ -1 and so $\gamma_1^c cs(G) = p$ - 1. Therefore, it follows that, $\gamma_{2cs}(G) = \gamma_1^c cs(G)$.

Theorem 2.9. Let *G* be a graph with $\delta(G) = 1$ or 2. If $\gamma_{2cs}(G) = p-1$ then $diam(G) \leq 2$.

Proof: Since $\gamma_{2cs}(G) = p$ -1, then p > 2. Let $S = \{v\}$ be a dominating set of *G*. If *u* and *w* be vertices of *G* such that degrees of *u* and *w* are equal to 1. Then *u* and *w* are end vertices in *G* and also *v* dominates *u* and *w*. Since RS^c -set has *p*-1 vertices and diam(G) = 2. If degree of *u* and *w* is not equal to 1, then *u* and *w* are adjacent vertices in *G* and also dominated by *v*. Then each vertex of degree is 2 and RS^c has *p* - 1 vertices. Clearly, diam(G) = 1 < 2. Hence it follows that $diam(G) \leq 2$.

Remark: The converse of the theorem (2.9) is false. For the graph C_4 or C_5 , $diam(C_4 \text{ or } C_5) = 2$ but $\gamma_{2cs}(C_4 \text{ or } C_5) \neq p-1$ and for the graph K_2 , $diam(K_2) = 1$ but $\gamma_{2cs}(K_2) \neq p-1$.

Theorem 2.10. Let *G* be a triangle free connected graph with minimum degree $\delta(G) \ge 2$. If $\gamma(G) = 2$, then $\gamma_{2cs}(G) \le p-2$.

Proof: Let RS^c be a center smooth 2-dominating set of *G*, so that $\gamma_{2cs}(G) = |RS^c|$. Since $\gamma(G) = 2$, then there exists a pair of vertices *x*, $y \in G$ such that x(y) is adjacent to at most one vertex in *S* because *G* is a triangle free connected graph. We show that $\gamma_{2cs}(G) \leq p$ -2.We consider two cases.

Case (*i*): Each vertex in *S* is adjacent. Then it is clear that, every vertex in *V* - *S* is adjacent to exactly one vertex in *S*. Since, every vertex in RS^c is adjacent to exactly one vertex in *S*, then $N(v) \cap RS^c = RS^c$ for all $v \in S$. Thus, $\gamma_{2cs}(G) = p - 2$.

Case (*ii*): Each vertex in *S* is not adjacent. Then there exist a vertex *u* is adjacent to both vertex in *S*. Since, $\delta(G) \ge 2$, each vertex in *G* has atleast two neighbors, say *r* and *s*. If *r* is adjacent to exactly one vertex in *S* and *u*, then triangle is formed. It is a contradiction. Therefore, *r* is adjacent to exactly one vertex in *S* and *s*. Similarly, *s* is adjacent to another vertex in *S* and *r*. Clearly, $rs \in E(G)$ and *G* formed a cycle C_5 . Therefore, we have $\gamma_{2cs}(G) . In both the cases, <math>\gamma_{2cs}(G) \leq p - 2$.

Remark: The converse of the theorem 2.10 is false. For the graph C_n , $n \ge 7$, $\gamma_{2cs}(C_n) \le p - 2$ but $\gamma(C_n) \ne 2$.

Theorem 2.11. If a connected graph *G* with $\gamma(G) = 1$, then $\gamma_{2cs}(G) = p - \gamma(G)$.

Proof: Since $\gamma(G) = 1 = |\{v\}|$, then a vertex *v* is adjacent to all the vertices in *G*. Therefore, the degree of *v* is *p* -1.Clearly, $v \in S$. It implies that |S| = 1 and then $|RS^c| = p - 1 = p - \gamma(G)$.

Theorem 2.12. Let *G* be a connected graph with $diam(G) \le 3$. If $\gamma(G) = 2$, then $\gamma_{2cs}(G) \le p-2$.

Proof: Case (i): If $\gamma(G)$ contains an independent vertex, then at east one vertex *u* is adjacent to both the vertices in $\gamma(G)$. Let *RS^c* be the γ_{2cs} -set of *G*. Since *diam*(*G*) \leq 3, then there exists a

vertex v is adjacent to one of the vertex in $\gamma(G)$. Therefore, $\gamma_{2cs}(G) .$

Case (*ii*): Suppose $\gamma(G)$ does not contain an independent vertex, then the two vertices in $\gamma(G)$ are adjacent. From the theorem 2.10, in case (i), $\gamma_{2cs}(G) = p - 2$. In both the cases, $\gamma_{2cs}(G) \leq p - 2$. **Remark:** The converse of the theorem 2.12 is false. For the graph C_7 , $\gamma_{2cs}(C_7) \leq p - 2$ but $\gamma(C_7) = 3 \neq 2$.

Theorem 2.13. If *G* is a connected graph with $\gamma(G) = 2$, d(u, v) > 2, for every $u, v \in S$ and diam(G) > 3, then $\gamma_{2cs}(G) = p - 2$.

Proof: Since $\gamma(G) = 2$, then there exists a pair of vertices $x, y \in V$ - *S* such that *x* is adjacent to one vertex and *y* is adjacent to another vertex in *S* because d(u, v)>2. Therefore, diam(G)=3. So that, from the theorem (2.12), $\gamma_{2cs}(G) \leq p - 2$. It is a contradiction to diam(G) > 3. Hence the result.

Theorem 2.14. The Petersen graph *G* has $\gamma_{2cs}(G) = 6$.

Proof: Let *G* be a Petersen graph with 10 vertices and 15 edges. Then *G* consists of two cycles C_1 and C_2 such that the cycle C_1 with vertex set $\{v_1, v_2, ..., v_n\}$ is nested by the another cycle C_2 with vertex set $\{u_1, u_2, ..., u_n\}$ and each $u_i \in C_2$ is adjacent with exactly one $v_i \in C_1$. Let RS^c be a γ_{2cs} -set of *G*. Further, let $u_s \in C_2$ is adjacent to more than one vertex in *S*. Since $d(u_i) = d(v_i) = 3$, $\forall u_i$, $v_i \in G$ and $\gamma(G) = 3$. Therefore $\gamma(G) = |S| = \Delta(G) = 3$. Clearly, $RS^c = V - S - \{u_s\}$. It implies that $\gamma_{2cs}(G) = p - \Delta(G) - 1 = 6$.

III. PARTICULUR VALUE FOR CENTER-SMOOTH TWO RESTRICT COMPLEMENT DOMINATION NUMBER

In this section, we identify certain graphs for which $\gamma_{2cs}(G) = p - 2$ or p-1. For instance $\gamma_{2cs}(B_{m,n}) = p - 2$ or $\gamma_{2cs}(K_{1, p-1} \text{ or } P_3) = p-1$. **Theorem 3.1.** Let *G* be a graph with cut edge e = uv where *u* and *v* are only central vertices, $\delta(G) = 1$ and $\gamma_{2cs}(G) = p - |\{u, v\}|$. Suppose *RS^c* is a γ_{2cs} -set of *G*, then a cut edge is incident to all other edges in *G*.

Proof: By the assumption on RS^c , $|RS^c| = p - 2$ and hence |S| = 2. Let $S = \{u, v\}$. Since u and v are the only central vertices of G, then u and v are in the dominating set of G. Suppose u is not adjacent to a vertex x in RS^c , then x is adjacent to v. Since, the degree of x is 1, x is not adjacent to any vertex in RS^c . Therefore RS^c has only pendant vertices. Since u and v are only the central vertices in G. Then it is clear that, e be a central edge in G. So, e dominates all other edges in G. Therefore, e is a cut edge of G and e is incident to all other edges in G.

Corollary 3.2. Let *G* be a graph with cut edge e = uv where *u* and *v* are only central vertices, $\delta(G) = 1$. If $\gamma_{2cs}(G) = p - |\{u, v\}|$, then $\gamma(G) + \gamma_{2cs}(G) = p$.

Proof: Since *u* and *v* are the central vertices, then *u* and *v* are adjacent because e = uv be a cut edge. Since, $\delta(G) = 1$, then each vertex in *V*-{*u*, *v*} is a pendent vertex (by the main theorem 3.1). Clearly, $\gamma(G)=2$. Therefore, $\gamma(G) + \gamma_{2cs}(G) = 2 + p - |\{u, v\}|$ since $\gamma_{2cs}(G) = p - |\{u, v\}|$. It implies that $\gamma(G) + \gamma_{2cs}(G) = p$.

Corollary 3.3. Let *G* be a graph with cut edge e = uv where *u* and *v* are only central vertices, $\delta(G) = 1$ and $\gamma_{2cs}(G) = p - |\{u, v\}|$, then each component of *G* is $K_{1, m}$ and $K_{1, n}$.

Proof: From corollary 3.2, each vertex in $V - \{u, v\}$ is a pendent vertex. Since, *u* and *v* are only the central vertices in *G*. Then *u* is adjacent to *m* pendant vertices and *v* is adjacent to *n* pendant vertices because $\delta(G) = 1$. From the main theorem 3.1, a cut edge

e is incident to all other edges in *G*. Clearly, *G* has m+n+2 vertices and m+n+1 edges. Therefore, *G* is $B_{m, n}$. Hence *G* has two components and each component of *G* is $K_{1, m}$ and $K_{1, n}$ and the common edge of *G* is central edge.

Theorem 3.4. Let *G* be a graph with $\delta(G)=1$ and $\lfloor(G)=p-1$ where $\lfloor(G)$ is the number of end vertices in *G*. suppose RS^c is γ_{2cs} -set of *G*, then every vertex in *S* is adjacent to all vertices in RS^c . The bounds are sharp.

Proof: Let *RS*^{*c*} be γ_{2cs} -set of *G*. Further, let $v \in G$ be a central vertex or cut vertex in *G*. Therefore, *v* dominates all other vertices in *G*. Clearly, *v*∈*S*. Since, *V*-{*v*} is the set of all end vertices in *G*. Clearly, *v* dominates all other end vertices in *V*-{*v*} and *N*(*v*)= [(*G*) and so *N*(*v*) ∩ [(*G*)=](*G*) ≥ 2. Hence *RS*^{*c*} - set has *p* -1 vertices since [(*G*) =*p*-1 and *v* is adjacent to all vertices in *RS*^{*c*}. The bounds are sharp for *G* is *K*_{1, *p*-1} or *P*₃.

Corollary 3.5. Let *G* be a graph with $\delta(G) = 1$ and $\lfloor (G) = p-1$ where $\lfloor (G) \rfloor$ is the number of end vertices in *G*. If $\gamma_{2cs}(G) = p - 1$ then $\gamma_{2cs}(G) = \beta_0(G)$.

Proof: Since $\gamma_{2cs}(G) = p - 1 = \lfloor (G) \rfloor$, it is clear that RS^c has only pendant vertices in G which are independent. Hence $\beta_0(G) = p - 1$ and so $\gamma_{2cs}(G) = \beta_0(G)$.

Corollary 3.6. Let *G* be a graph with $\delta(G) = 1$ and $\lfloor (G) = p - 1$ where $\lfloor (G \text{ is the number of end vertices in } G. \text{ if } \gamma_{2cs}(G) = p-1$ then \overline{G} is disconnected.

Proof: From the main theorem 3.4, *G* is $K_{1, p-1}$ or P_3 . We know that non adjacent vertices in *G* are adjacent in \overline{G} . Therefore, \overline{G} is K_p , $(p \ge 2)$ with an isolated vertex. Hence, \overline{G} is not a connected graph.

Theorem 3.7. Let *G* be a graph with cut edge e = uv where *u* and *v* are only central vertices, $\delta(G) = 1$. If $\gamma_{2cs}(G) = p - |\{u, v\}|$, then $\gamma_{2cs}(G) = \beta_0(G)$.

Proof: From the theorem 3.1, we have RS^c has only pendent vertices which are independent. Therefore, $\beta_0(G) = p - |\{u, v\}|$. Hence, $\gamma_{2cs}(G) = \beta_0(G)$.

Theorem 3.8. Let G be a graph with $\delta(G) = 1$ and $\lfloor (G) = p-1$ where $\lfloor (G) \rfloor$ is the number of end vertices in G. Then the following are equivalent:

(i) $\gamma(G) + \gamma_{2cs}(G) = p.$ (ii) $\gamma(G) = 1 \text{ and } \gamma_{2cs}(G) = p - 1.$

(iii) G is $K_{1, p-1}$ or P_3 .

Proof: (i) \Leftrightarrow (ii) follows from the theorem 3.5. We prove

(ii) \Rightarrow (iii). Let RS^c be a γ_{2cs} -set of a graph G. Then $|RS^c| = p - 1$ and |S| = 1. Let $S = \{v\}$. Since, every vertex in S is adjacent to all vertices in $|RS^c|$ and $\lfloor(G) = p - 1$. Now, we claim that each vertex in RS^c is pendent vertex. If not there exists a vertex $u \in RS^c$ is adjacent to x and y where $x, y \in RS^c$. Now clearly, RS^c has less than p - 1 vertices. It is a contradiction to $|RS^c| = p-1$. Hence, every vertex in RS^c is pendent vertex and so G is $K_{1,p-1}$ or P_3 .

We prove that (iii) \Rightarrow (ii). Since *G* has a universal vertex *v*. Therefore, $\gamma(G) = 1$. Clearly, a vertex *v* is adjacent to all other vertices in *G*. Since, *V*-{*v*} be only the end vertices and *v*∈*S*. Clearly, *RS^c* has *V*-{*v*} vertices and so *RS^c* has *p* - 1 vertices. Hence, $\gamma_{2cs}(G) = p - 1$.

Theorem 3.9. If a connected graph *G* has exactly one vertex of degree p - 1, then $\gamma_{2cs}(G) = \gamma_{2cs}(\overline{G}) + \Delta(G)$.

Proof: Let G be a connected graph. Since, G has exactly one vertex of degree p-1, then G is $K_{1, p-1}$ by the theorem 3.8 and

 $\gamma_{2cs}(G) = p - 1$. In \overline{G} , adjacent vertices in G are non-adjacent vertices in \overline{G} . Hence, \overline{G} is disconnected. That is, $\overline{G} = K_p$ with an isolated vertex. Therefore, $\gamma_{2cs}(\overline{G})=0$. Hence, $\gamma_{2cs}(\overline{G}) = \gamma_{2cs}(\overline{G}) + \Delta(G)$.

IV. CONCLUSION

In this paper, S_1 - eccentricity of a vertex and center smooth set have been defined. Also, the center smooth graph and restrict S^c set have been introduced. The center smooth 2- RS^c dominating set and center smooth 2 - RS^c domination number of some families of graphs were enumerated.

REFERENCES

- A. Anto Kinsley and J. Joan Princiya, "Center Smooth One Complement Domination of Some Graphs," in Global Journal of Pure and Applied Mathematics, ISSN:: 0973-1768, Volume 17, Number 1(2021), pp.37 - 46..
- [2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, New York, (1990).
- [3] F. Buckley, Z. Miller, and P. J. Slater, On graphs containing a given graph as center, Journal Of Graph Theory, 5(4): 427 - 434, (1981).
- [4] Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi (2006).
- [5] R. Ram Kumar, Kannan Balakrishnan, Manoj Changat, A. Sreekumar and Prasanth G. Narasimha-Shenoi, On The Center Sets and Center Numbers of

Some Graph Classes, Discrete Mathematics, arXIV:1312.3182v1 [cs.DM], (2013).

[6] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, INC (1998).

AUTHORS

First Author: Dr. A. Anto Kinsley, M.Sc., M.Phil., Ph.D., M.Tech. Associate Professor,

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002 Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, India. Email Address: antokinsley@yahoo.com

Second Author: J. Joan Princiya,

Research Scholar,

Department of Mathematics,

St. Xavier's College (Autonomous), Palayamkottai - 627 002 Affiliated to Manonmaniam Sundaranar University, Tirunelveli - 627012, India. Email Address: joaprincy@gmail.com